		Hall Ticket Number :			
	L	Code: 19A242T	R-19		
		II B.Tech. II Semester Supplementary Examinations July/August 2	2022		
		Electromagnetic Fields			
		(Electrical and Electronics Engineering)			
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 7 ********	: 3 Hc 70 Ma		
		UNIT–I	Marks	со	Blooms Level
1.	a)	State coulomb's law and derive the force equation for 'n' number of charges			
		using superposition principle.	10M	CO1	L3
	b)	Explain charge distribution in electrostatic fields. OR	4M	CO1	L1
2.	a)	State and derive the point form of Maxwell's first equation	9M	CO1	L2
	b)	Calculate the absolute potentials at distance r=40cm and 10cm from a charge			
		Q=0.2µC.	5M	CO1	L2
3.	a)	UNIT–II Derive an expression per energy density in an electro static field.	10M	CO1	L3
0.	b)	Describe dipole and dipole moment.	4M	CO1	L3 L2
	2)	OR	-1101	001	LZ
4.	a)	Describe the conduction current density and conventional current density.	7M	CO2	L2
	b)	The point charges -2nC, 8nC, and 6nC are located at (0,0,0) (0,0,2), and			
		(2,0,0)respectively. Find energy in system.	7M	CO1	L2
5.	a)	Develop an expression for MFI at any point along the axis of the solenoid coli			
	L)	wound a non-magnetic frame Using Biot-savart law.	8M	CO3	L3
	b)	The solenoid has 2000 turns, a length of 75cm, and a radius of 5 cm. If it carries a current of 50mA. Calculate H at any one end of solenoid.	6M	CO3	L3
		OR	OW	000	LU
6.	a)	Define scalar magnetic potential and list out its limitation.	7M	CO3	L1
	b)	In a current free region of relative permittivity is 1, the magnetic scalar potential is given as $V_m = x^2y + y^2x + z$. Evaluate the magnitude of magnetic flux density at (1,1,1)	7M	CO3	L3
		UNIT-IV			
7.	a)	Derive an expression for Lorentz force equation.	7M	CO3	L3
	b)	Determine the Magnitude of magnetic force on a conductor oriented from O (0,0,0)			
		to A (0.6,0,0) carrying a current of 8mA placed in a field $B = 0.2a_x-0.6a_y+0.2a_z$ T.	7M	CO3	L3
Q	a)	OR Derive the expression for energy stored and energy density in a magnetic field.	4 4 5 4	000	1.0
0.	a)	UNIT-V	14M	CO3	L3
9.	a)	State and explain Maxwell's equations for time varying field in integral and point			
•	,	form in free space.	14M	CO5	L2
		OR			
10.	· ·	State Maxwell's equations, and obtain them in differential form.	7M	CO5	L2
	b)	In a material for which = 8 S/m and $_r$ = 1, the electric field intensity is E = 200sin1010t V/m. find the conduction and displacement current densities.	7M	CO5	L3

	Ha	all Ticket Number :			
	Со	de: 19A25DT	R-19		
		III B.Tech. I Semester Supplementary Examinations July 202	2		
		Fuzzy Logic and Neural Network			
		(Electrical and Electronics Engineering)		1	
	-	Tir = nswer any <i>five full</i> questions by choosing one question from each unit (5 x 14	ne:3⊦ ⊧ 70Ma i		
			, 01/ 14	,	
			Marks	CO	Blooms Level
		UNIT-I			
1.	a)	What is the role of membership function in fuzzy logic? Mention various			
	L.)	membership functions.	7M	CO1	L2
	b)	Explain the basic fuzzy set operations on fuzzy relations.	7M	CO1	L2
C	2)	OR Evolution the properties of Europy acts	714	004	
2.	a) b)	Explain the properties of Fuzzy sets. Compare and contrast fuzzy logic control and classical control system	7M 7M	CO1	L2
	D)		7 101	CO1	L2
3.	a)	How do you convert a fuzzy set to single crisp value and discuss the			
0.	u)	methods to be used?	7M	CO2	L2
	b)	With a neat sketch discuss the major components of fuzzy logic system.	7M	CO2	L2
		OR			
4.	a)	Explain the properties of commutativity, associativity, distrubutivity,			
		idempotence and identity with respect to crisp sets and fuzzy sets	7M		L2
	b)	List the various defuzzification techniques. Explain each of them in detail.	7M	CO2	L2
5.	a)	List out the differences between supervised and unsupervised learning with a			
	b)	neat sketch Evalain what is an artificial neural network and show how a basis ANN is	7 IVI	CO3	L1
	b)	Explain what is an artificial neural network and show how a basic ANN is constructed from a biological neuron concept	7M	CO3	L1
		OR		000	
6.	a)	Explain with neat sketch the McCulloch-Pitts model of artificial neural			
	,	network?	7M	CO3	L4
	b)	Explain the architecture of spiking-neuron model.	7M	CO3	L4
		UNIT-IV			
7.		State and prove perceptron convergence theorem	14M	CO4	L4
		OR			
8.	a)	What are the steps involved in the backpropagation algorithm? Explain	7M	CO4	L4
	b)	What are learning difficulties in backpropagation and how do you overcome it?	7M	CO4	L4
		UNIT-V	7 101	004	L4
9.		Describe how a neural network may be trained for a load forecasting task.			
0.		Illustrate with an example.	14M	CO5	L3
		OR		200	20
10.		Write short notes on Neural network and fuzzy logic applications to Power			
		system.	14M	CO5	L3
		END			

Hall T	icket Number :			
Code:	19A354T	F	R-19	
	III B.Tech. I Semester Supplementary Examinations July	2022		
	Management Science			
Max I	(Electrical and Electronics Engineering) Marks: 70	Time	e: 3 Ho	SUIRS
	r any five full questions by choosing one question from each unit (5			
	*****		~~	Blooms
		Marks	CO	Level
1.	UNIT–I What is meant by Management? Explain its functions.	14M	C01	L2
1.	OR		001	L
2.	Discuss about the evolution of scientific management and modern			
	management.	14M	C01	L1
3.	UNIT–II What is meant by inventory management? Explain its objectives.	1/1	C02	L1
0.	OR	14101	002	L1
4. a)	Marketing Mix	7M	C02	L1
b)	Channels of distribution	7M	C02	L2
- \				
5. a)	Significance of Human Resource Management	7M 7M	C03	L1
b)	Functions of Human Resource Management OR	7 171	C03	L1
6.	Discuss the role of Training and Development for enterprise growth.	14M	C03	L2
	UNIT–IV			
7. a)	Write short notes on Working Capital.	7M	C04	L3
b)	Write short notes on Cost of Capital.	7M	C04	L3
8. a)	OR Explain about How to draw the network diagram.	7M	C04	L3
o. a) b)	Explain about how to draw the network diagram. Explain in detail Critical Path Method (CPM).	7M	C04	L3
~)			001	20
	UNIT-V			
9.	Discuss about Enterprise Resource Planning.	14M	C05	L2
4.6	OR			
10.	Discuss about Total Quality Management (TQM) And Supply Chain Management.	14M	C05	L2
	END		000	

	Hal	I Ticket Number :			
Į		le: 19A252T	R-	19	
	COL	III B.Tech. I Semester Supplementary Examinations July 2	2022		
		Power Electronics			
		(Electrical and Electronics Engineering)			
	-	x. Marks: 70 wer any five full questions by choosing one question from each unit (5x	Time: 14 = 70		
	7 (115	********		man	5
			Marks	со	Blooms Level
		UNIT-I			
1.	a)	Draw and explain dynamic characteristics of a thyristor during its turn-on	714		
	b)	processes. Describe any two methods of forced Commutation for SCR.	7M 7M	CO1 CO1	L2
	D)	OR	7 101	COT	L2
2.	a)	SCRs with rating of 1000v and 200A are available to be used in a string to			
		handle 6kV and 1kA. Calculate the number of series and parallel units	714		
	b)	required in case de-rating factor is 0.2 and 0.3. Describe RC triggering circuit to trigger SCRs.	7M 7M	CO1 CO1	L3 L2
	D)		7 101	COT	LZ
3.	a)	Describe the mechanism of over voltage protection of SCR by Metal Oxide			
-		Varistors.	7M	CO2	L2
	b)	Discuss voltage, current and power ratings of SCR.	7M	CO2	L2
	、	OR			
4.	,	Demonstrate a method to protect a SCR against dv/dt problems. Demonstrate Gate Protection method.	7M 7M	CO2	L2
	b)		7M	CO2	L2
5.		Explain the operation of Single Phase half controlled rectifier with R-load			
		and draw the wave forms. Derive the average output voltage for the above			
		operation. OR	14M	CO3	L2
6.	a)	What is the effect of source inductance on the performance of Single Phase			
0.	u)	fully controlled converter? Discuss with neat sketches.	7M	CO3	L2
	b)	Explain briefly the different modes of operation of three phase dual converter.	7M	CO3	L2
		UNIT-IV			
7.	a)	With neat sketch, explain the operation of Buck-Boost converter and also derive the equation for output voltage.	10M	CO4	L2
	b)	What are the applications of dc-dc choppers?	4M	CO4	L2
	,	OR			
8.	a)	Explain about Step-down chopper and derive the output voltage equation.	8M	CO4	L2
	b)	Explain time ratio and current limit control strategies of DC Choppers.	6M	CO4	L2
		UNIT-V			
9.	a)	With neat sketch explain Single phase AC voltage controller for R-load. Derive RMS load voltage and current.	7M	CO5	L2
	b)	Explain the working of a single phase bridge type cyclo-converter for RL-		000	
	,	load of frequency $f_0 = \frac{1}{4} f_s$ with continuous conduction mode.	7M	CO5	L3
		OR	7 111	000	LJ
10.		Explain the principle of operation of three-phase inverter with 180° conduction			
		mode with necessary wave forms & circuit.	14M	CO5	L2
		END			

	На	all Ticket Number :			
		de: 19A253T	R-1	9	
	Мс	III B.Tech. I Semester Supplmentary Examinations July 20 Power System Analysis (Electrical and Electronics Engineering)	Time: 3		-
		*****	Marks	со	Blooms
		UNIT–I			Level
1.	a) b)	Explain the formation of Y_{Bus} using Singular Transformation Method For the 3-bus system shown in the figure, Obtain Z_{bus} ?	7M	CO1	L2
	0)				
		$\begin{array}{c} 0.08 + j0.24 \\ 1 \\ 0.02 + j0.06 \end{array}$	7M	CO1	L3
2.	a)	OR Find the bus incidence matrix for the following network?			
2.	u)		714	CO1	L2
	b)	Explain the modifications necessary in the Z _{BUS} when a	7 101	COT	LZ
	,	mutually coupled element is removed or its impedance is changed.	7M	CO1	L2
3.	a)	With the help of a neat flow chart, explain the Newton- Raphson method of load flow solution when the system contains voltage controlled busses in addition to swing bus and load bus.	7M	CO2	L2
	b)	Perform one iteration of FDLF method for the system shown in figure.			

0.06+j0.16

3

(0.01+j0.08)

7M CO2 L3

Code: 19A253T

		OR			
4.	a)	What are the works involved in a load flow study?	7M	CO2	L1
	b)	Develop an algorithm for G-S load flow method including PV	714	CO2	L2
		buses in the power system.	7 111	002	LZ
5.	a)	What do you understand by sequence networks? What is			
		their importance in unsymmetrical fault calculations?	7M	CO3	L1
	b)	A 25 MVA, 13.2 kV alternator with solidly grounded neutral has a sub transient reactance of 0.25 p.u. The negative and zero sequence reactance's are 0.35 and 0.1 p.u. respectively. A single line to ground fault occurs at the terminals of an unloaded alternator; determine the fault current and the line-to-line voltages. Neglect resistance.	7M	CO3	L3
•	,	OR			
6.	a)	Explain in detail about the steps to be followed for the symmetrical fault calculations.	7M	CO3	L2
	b)	Draw and explain the positive, negative, zero sequence			
		impedance diagrams for different 3-phase transformer winding connections.	7 M	CO3	L2
		UNIT-IV	7 101	000	LZ
7.	a)	Define steady state stability limit.	7M	CO4	L1
	b)	Derive steady state stability limit of a line with generalised circuit constants of A, B, C and D if sending end and receiving end voltages are V_S and V_R . OR	7M	CO4	L2
8.	a)	Derive the expression for the maximum power transfer from the steady state power	7M	CO4	L2
	b)	An alternator supplies 50 MW to the infinite bus bar, the steady state limit of the system being 100 MW. Determine whether the alternator will remain the synchronism if the prime mover input is increased to 32 MW by assuming the			
		losses are zero.	7M	CO4	L3
9.	a)	UNIT-V What are the assumptions made in deriving swing equation			
	,	and derive the equation.	7M	CO4	L1
	b)	Explain Solution of Swing equation by point by point method. OR	7M	CO4	L2
10.	a)	Explain the latest methods to improve the transient state		00 <i>1</i>	
	b)	stability Explain equal area criterion in detail and write its limitations.		CO4 CO4	L2 L2
	~)		7 111	004	LZ

	Hal	I Ticket Number :			-
L		le: 19A25BT	R-1	9	
		III B.Tech. I Semester Supplementary Examinations July 2	022		
		Renewable Energy Systems	OZZ		
		(Electrical and Electronics Engineering)			
		x. Marks: 70	Time: 3		
	An	swer any <i>five full</i> questions by choosing one question from each unit (5 x 1 ******	4 = 70M	arks)	
			Marks	со	Blooms
		UNIT–I			Level
1.	a)	How are renewable energy sources classified?	7M	1	3
	b)	Elucidate the principle of operation of sun shine recorder	7M	2	3
		OR			
2.	a)	Explain in brief about spectral distribution of solar energy	7M	2	2
	b)	Write a brief note on the various types of solar radiation	7M	2	2
		UNIT–II			
3.	a)	Explain in detail with neat sketch the construction and operation of flat		0	0
	۲	plate collector	7M 7M	3	2
	b)	Describe the process of photovoltaic energy conversion	7M	3	3
4.	2)	OR Expound the persective of energy storage methods and explain the			
4.	a)	Expound the necessity of energy storage methods and explain the thermo chemical type of energy storage	7M	3	3
	b)	Illustrate with a neat diagram and explain in detail the operating principle		-	-
	,	of solar drying	7M	3	4
		UNIT–III			
5.	a)	Explicate the various site selection consideration parameters for WECS	7M	4	3
	b)	Expound in brief the performance characteristics of wind machines	7M	4	3
		OR			
6.	,	Discuss the advantages and disadvantages of WECS	7M	4	2
	b)	Demonstrate with a neat block diagram the working of the various parts	714	1	2
		of WECS	7M	4	3
7.	a)	UNIT-IV Present a short outline on closed and open cycle operation of ocean			
1.	u)	thermal energy power plant	7M	5	4
	b)	Explain in detail the factors affecting wave energy	7M	5	2
		OR			
8.		Describe in detail the various types of tidal power plants. List its			
		advantages and disadvantages	14M	5	3
		UNIT–V			
9.	a)	Differentiate between anaerobic and aerobic digestion	7M	5	3
	b)	Describe elaborately any one method of harnessing Geothermal energy	7M	5	3
		OR			
10.	a)	Elucidate in detail the principle of operation of any one type of Bio-gas	7M	5	3
	b)	digesters Write short note on the various types and application of fuel cells	7M	ว 5	3
	0)	***END***	7 101	5	5

Page **1** of **1**

Н	Iall Ticket Number :			1
Co	de: 19A251T	R-19		
Мс	III B.Tech. I Semester Supplementary Examinations July 2023 Electrical and Electronic Measurements (Electrical and Electronics Engineering)	ne: 3 H		
	*****	Marks	СО	Bloo
	UNIT–I	Marks	00	Lev
a)	What are the classifications of instruments?	4M	1	
b)	Derive the equation for deflection if the instrument is PMMC (i) spring controlled (ii) gravity controlled?	10M	1	
a)	Discuss the different methods of specifying the results of			
	measurements?	7M	1	
b)	Describe the working of a universal shunt uses for multi-range ammeters. Derive expressions for resistances of different sections of a universal shunt used for a 3 range ammeter?	7M	1	
a)	Describe the constructional details of an Electrodynamometer type wattmeter. Derive the expression for torque when the instrument is used on a.c. Explain why it is necessary to make the potential coil circuit purely resistive?	7M	2	
b)	What is Phantom loading? Explain with an example how it is more			
	advantageous when testing with direct loading.	7M	2	
a)	OR Describe the construction and working of a two element Induction			
- ,	type energy meter.	7M	2	
b)	The power flowing in a 3 phase, 3 wire balanced load system is measured by two wattmeter method. The reading of wattmeter A is 7500 W and of wattmeter B is -1500 W. what is the power factor of the system? If the voltage of the circuit is 400 V, what is the value of capacitance which must be introduced in each phase to cause the whole of the power measured to appear on wattmeter A? the			
	frequency is 50 Hz.	7M	2	
-)	UNIT-III			
a)	Explain the term "standardization:, of a potentiometer. Describe the procedure of standardization of a d.c. potentiometer.	7M	2	
b)	Draw the equivalent circuit and phase diagram of a potential transformer. Derive the expressions for its ratio and phase angle errors. Describe the assumptions made for derivation of errors.	7M	2	
		Page	1 of 2	

Code: 19A251T

		OR	• 17/12		
6.	a)	Describe the construction and working of a polar type potentiometer. How it is standardized?	7M	2	2
	b)	Explain the Wilson Compensation Method for reductions of errors			
		in current transformers.	7M	2	2
7.	a)	Explain the loss of charge method for measurements of insulation			
7.	а)	resistance of cables.	7M	3	2
	b)	Describe the working of a low voltage Schering bridge. Derive the equations for capacitance and dissipation factor.	714	0	0
			7M	3	2
_		OR			
8.	a)	Draw the circuit of a Kelvin's Double Bridge used for measurement of low resistances. Derive the condition for balance.	7M	3	2
	b)	Explain why Maxwell's inductance-capacitance bridge is useful for measurement of inductance of coils having storage factor between 1 and 10.	7M	3	2
		UNIT-V		U	-
9.	a)	Derive an expression for vertical deflection of an electron beam in			
01	α,	a CRT	7M	4	3
	b)	With the help of a neat sketch explain the construction and working			
		of smart energy meter.	7M	4	2
		OR			
10.	a)	Explain the functioning of a time base generator in a CRO.	7M	4	2
	b)	Enumerate with a block diagram the various elements involved in a digital data acquisition system. Why multiplexers and scanners are important in this type of data acquisition system?	7M	4	2