Hall Ticket Number :											1	
----------------------	--	--	--	--	--	--	--	--	--	--	---	--

Code: 19A353T

III B.Tech. I Semester Supplementary Examinations June 2024

Design of Machine Elements-I

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ******

UNIT-I

150

500

The dimensions of an overhang crank are given in Fig. The force P acting at the 1. crankpin is 1 kN. The crank is made of steel 30C8 (Syt = 400 N/mm²) and the factor of safety is 2. Using maximum shear stress theory of failure, determine the diameter d at the section - XX.

OR

2. a) Classify the different types of loads and explain corresponding stresses induced in machine members in brief.

1251

100

What are the manufacturing considerations to be considered by design? b)

UNIT-II

3. The section of a steel shaft is shown in Fig. The shaft is machined by a turning process. The section at XX is subjected to a constant bending moment of 500 kN-m. The shaft material has ultimate tensile strength of 500 MN/m², yield point of 350 MN/m² and endurance limit in bending for a 7.5 mm diameter specimen of 210 MN/m². The notch sensitivity factor can be taken as 0.8. The theoretical stress concentration factor can be taken as 2.5633, notch sensitivity as 0.9, the reliability as 90%. Take K_{sur}=0.8. Find the diameter of shaft.

450ø

Y

X

3000

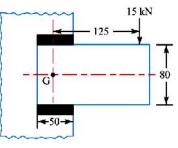
8 mm

Marks

R-19

14M

7M


7M

14M

- 4. a) Determine the size of a piston rod subjected to a total load having cyclic fluctuation from 150 kN (tension) to 25 kN (compression). The endurance limit is 360 MPa and yield strength is 400 MPa. Take factor of safety = 1.5; surface finish factor = 0.88 and stress concentration factor = 2.25.
 - b) Describe Goodman's criteria.

UNIT-III

5. A bracket carrying a load of 15 kN is to be welded as shown in Fig. Find the size of weld required if the allowable shear stress is not to exceed 80 MPa.

14M

7M

9M

5M

7M

7M

OR

- 6. a) An electric motor weighing 10 kN is lifted by means of an eye bolt. The eye bolt is screwed into the frame of the motor. The eye bolt has coarse threads. It is made of plain carbon steel 30C8 ($S_{yt} = 400 \text{ N/mm}^2$) and the factor of safety is 6. Determine the size of the bolt.
 - b) What are the advantages and disadvantages of welded joints over threaded joints? 7M

UNIT–IV

7. Design and draw a cotter joint to support a load varying from 30 kN in compression to 30 kN in tension. The material used is carbon steel for which the following allowable stresses may be used. The load is applied statically. Tensile stress = compressive stress = 50 MPa ; shear stress = 35 MPa and crushing stress = 90 MPa.
14M

OR

- 8. a) Sketch and explain the design procedure for a Cotter joint with Gib.
 - b) What are the applications of knuckle joint?

UNIT-V

9. A shaft is supported by two bearings placed 1 m apart. A 600 mm diameter pulley is mounted at a distance of 300 mm to the right of left hand bearing and this drives a pulley directly below it with the help of belt having maximum tension of 2.25 kN. Another pulley 400 mm diameter is placed 200 mm to the left of right hand bearing and is driven with the help of electric motor and belt, which is placed horizontally to the right. The angle of contact for both the pulleys is 180° and $\mu = 0.24$. Determine the suitable diameter for a solid shaft, allowing working stress of 63 MPa in tension and 42 MPa in shear for the material of shaft. Assume that the torque on one pulley is equal to that on the other pulley.

OR

- 10. a) How the shaft is designed when it is subjected to twisting moment and bending moment?
 - b) Classify the shaft coupling.

7M

7M

14M

F	lall Ticket Number :			1
C	ode: 19A352T	R-19	7	
	III B.Tech. I Semester Supplementary Examinations June 20	24		
	Machine Tools			
	(Mechanical Engineering)			
		ne:3+		
Α	nswer any five full questions by choosing one question from each unit (5x14	= 70 M	arks)	
		Marks	СО	
	UNIT–I Why relief angles, cutting edge angles and nose radius are be provided for			
•	a single point cutting tool. Explain with neat sketches.	14M	CO2	
	OR			
2. a) Explain about ASA system in detail.	6M	CO1	
b		8M	CO1	
3.	Classify the Multi Spindle Automatic Lathe machines. Explain any one type			
	of Multi Spindle Automatic Lathe machine.	14M	CO2	
	OR			
. a) Write a short notes on single spindle Automatic Lathes.	7M	CO2	
b) Describe any two work holding devices used in Lathe. With neat sketches?	7M	CO2	
	UNIT–III			
5. a) Write short notes on Deep Hole Drilling machine.	7M	CO3	
b) With the help of a sketch, explain the working of a Universal dividing head.	7M	CO3	
	OR			
б. а			CO3	
b) Explain up Milling and down Milling with neat sketches	7M	CO3	
_	UNIT-IV			
	How do you classify Grinding machines? Explain about Centre less Grinding machine with neat sketch.	1 / 1 /	CO4	
	Onnoing machine with heat sketch. OR	14111	004	
з. а		7M	CO4	
, a b			CO5	
D		7 101	000	
).	Explain about Box Jig with neat sketch	14M	CO5	
	OR	1-111	000	
).	Explain the 3-2-1 Principle with neat sketch	14M	CO5	

Hall Ticket Number :		
Code: 19A35HT	R-19	
III B.Tech. I Semester Supplementary Examinations June 202	4	
Automation & Robotics		
(Mechanical Engineering)		
	e: 3 Ho	
Answer any five full questions by choosing one question from each unit (5x14 =	70 Mar	ks)
	Marks	со
UNIT–I		
. Explain the strategies of an Automation.	14M	CO1
OR		
. Explain the hardware components for automation and process control.	14M	CO1
UNIT-II		
. What is an Automated assembly system? Classify and explain the types of		CO2
automated assembly systems OR	14M	002
 With a suitable example, explain the procedure of Ranked Position Weights (RPW) method of Line Balancing 	14M	CO2
(Rev) motiod of Ento Datationing	1 1101	002
UNIT–III		
a) Explicate the concept of degrees of freedom	7M	CO3
b) Explain with neat sketch the application of robot in material handling.	7M	CO3
OR		
. Define a Robot. Briefly explain the components of robots with neat sketch	14M	CO3
UNIT–IV		
. What is Robot kinematics? Explain Robot Translation, Rotation and Transformation		
in Robot	14M	CO4
OR		
. Discuss about Skew motion joint integrated motion and straight line motion with		004
examples.	14M	CO4
UNIT-V	7M	COF
 a) Explain the importance of actuators in robots b) With a schematic diagram describe the principle of operation of ANX ONE 		CO5
b) With a schematic diagram, describe the principle of operation of ANY ONE external sensor.	7M	CO5
OR	7 101	000
. a) Discuss about the working of Electric motors with a sketch	7M	CO5
b) State the importance of the sensors in robotics.	7M	CO5
***	7 1 1 1	550

	Γ	На	II Ticket Number :			
			de: 19A351T	R-19)	
			III B.Tech. I Semester Supplementary Examinations June 20	24		
			Applied Thermodynamics-II			
		Mc	(Mechanical Engineering) ax. Marks: 70 Tin	ne:3 F		
ctice.			swer any five full questions by choosing one question from each unit (5x14			
uator and/or equations written eg. 32+8=40, will be treated as malpractice			UNIT–I	Marks	СО	BL
as ma	1.		In a single-heater regenerative cycle the steam enters the turbine at 40 bar,			
ited a			400°C and the exhaust pressure is 0.1 bar. The feed water heater is a			
e trea			direct contact type which operates at 6 bar. Find: (i) the efficiency and the steam rate of the cycle, (ii) the increase in mean temperature of heat			
vill be			addition, efficiency and steam rate as compared to the Rankine cycle			
40, <			without regeneration. Pump work may be neglected.	14M	CO1	L3
2+8=	~		OR		004	
g. 30.	2.		Discuss Reheat Rankine cycle with a neat sketch.	14M	CO1	L2
ten e	3.		In a boiler test 1100 kg of coal is consumed in 24hours. The mass of water			
s writ			evaporated is 10000 kg and the mean effective pressure is 7 bar. The feed			
ation			water temperature was 40°C, heating value of coal is 30000 kJ/kg. The enthalpy of 1kg steam at 7 bar is 2570.7 kJ. Determine Equivalent			
edug			evaporation per kg of coal and Efficiency of the boiler.	14M	CO2	L3
ld/or			OR			
or ar	4.	a)	Describe any one type of pressure gauge used in boilers with diagram	7M	CO2	L2
b		b)	Classify steam generators in detail.	7M	CO2	L4
Any revealing of identification, appeal to evi	5.		A convergent divergent nozzle is required to discharge 2 kg/sec of steam.			
oeal .	5.		The nozzle is supplied with steam at 7 bar and 200°C and discharge takes			
ı, app			place against a back pressure of 1 bar. The expansion up to throat is			
catior			isentropic and the frictional resistance between throat and exit is equivalent to 63 kJ/kg of steam. Taking approach velocity of 75 m/sec and throat			
sntific			pressure of 4 bar estimate suitable areas for the throat and exit.	14M	CO3	L3
of ide			OR			
ling o	6.	a)	Classify nozzles with suitable diagrams.	7M	CO3	L4
evea		b)	Explain critical pressure ratio of a nozzle?	7M	CO3	L2
Any r	7.		A prime mover uses 15000 kg of steam per hour and develops 2450 kW.			
2			The steam is supplied at 30 bar and 350°C. The exhaust from the prime			
			mover is condensed at 725 mm of Hg when barometer records 755 mm of			
			Hg. The condensate temperature from the condenser is 30°C and the rise of temperature of circulating water is from 8°C to 18°C. Determine :(i) The			
			quality of steam entering the condenser. (ii) The quantity of circulating			
			cooling water and the ratio of cooling.	14M	CO4	L3
	0		OR Differentiate ist condensare with surface condensare	714	004	1.4
	8.	a) b)	Differentiate jet condensers with surface condensers. Classify the steam condensers.	7M 7M	CO4 CO4	L4 L4
		~)	UNIT-V			- '
	9.		Derive the condition for maximum efficiency and blade height of reaction			
			turbine.	14M	CO5	L6
	10	~)	OR	714		14
	10.	a) b)	Illustrate governing of turbines with a suitable diagram Explain velocity compounding in steam turbines with neat sketch	7M 7M	CO5 CO5	L4 L2
		~,	***		200	