Hall Ticket Number :											R-19	
Code: 19A353T							K-17					

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2023

Design of Machine Elements -I

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

Marks

UNIT-I

1. A cylindrical shaft made of steel of yield strength 700 MPa is subjected to static loads consisting of bending moment 10 kN-m and a torsional moment 30 kN-m. Determine the diameter of the shaft using different theories of failure, and assuming a factor of safety of 2. Take E = 210 GPa and poisson's ratio = 0.25.

14M

OR

2. a) Classify the different types of loads and explain corresponding stresses induced in machine members in brief.

7M

b) What are the manufacturing considerations to be considered by design?

7M

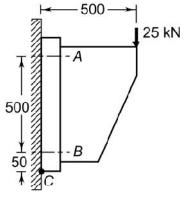
UNIT-II

3. A simply supported beam has a concentrated load at the centre which fluctuates from a value of P to 4 P. The span of the beam is 500 mm and its cross-section is circular with a diameter of 60 mm. Taking for the beam material an ultimate stress of 700 MPa, a yield stress of 500 MPa, endurance limit of 330 MPa for reversed bending, and a factor of safety of 1.3, calculate the maximum value of P. Take a size factor of 0.85 and a surface finish factor of 0.9

14M

OR

4. a) Define endurance limit? Discuss the factors which affect the endurance limit of the material.


8M

b) Explain the following terms: (i) Stress concentration (ii) Endurance limit

6M

UNIT-III

5. A wall bracket is attached to the wall by means of four identical bolts, two at A and two at B, as shown in Fig. Assuming that the bracket is held against the wall and prevented from tipping about the point C by all four bolts and using an allowable tensile stress in the bolts as 35 N/mm², determine the size of the bolts on the basis of maximum principal stress theory.

14M

OR

- 6. a) List out the advantages and disadvantages of screw joints.
 - b) What are the advantages and disadvantages of welded joints over threaded joints?

7M 7M

Code: 19A353T

UNIT-IV

7. Design a gib and cotter joint to join square rods, to carry a maximum load of 35 kN. Assuming that the gib, cotter and rod are of same material and have the following allowable stresses: $_{t} = 20 \text{ MPa}$; = 15 MPa; and $_{c} = 50 \text{ MPa}$.

14M

OR

8. a) What are the applications of knuckle joint?

6M

b) Explain different types of keys with sketches.

8M

UNIT-V

- 9. Design a bushed-pin type of flexible coupling to connect a pump shaft to a motor shaft transmitting 32 kW at 960 r.p.m. The overall torque is 25 percent more than mean torque. The material properties are as follows:
 - (a) The allowable shear and crushing stress for shaft and key material is 40 MPa and 80 MPa respectively.
 - (b) The allowable shear stress for cast iron is 15 MPa.
 - (c) The allowable bearing pressure for rubber bush is 0.8 N/mm².
 - (d) The material of the pin is same as that of shaft and key.

Draw neat sketch of the coupling.

14M

OR

10. a) How the shaft is designed when it is subjected to twisting moment and bending moment?

7M

b) Classify the shaft coupling.

7M

Hall Ticket Number :								
Code: 19A35JT			,				R-19	

		III B.Tech. I Semester Supplementary Examinations Nov/Dec 2 Industrial Robotics	2023		
		(Mechanical Engineering)			
			ne: 3 H = 70 M		
		*****	Marks	СО	BL
		UNIT-I	Marko	00	DL
1.		Define Robot? Explain robot components with a neat sketch.	14M	CO1	L2
		OR			
2.		Define gripper? Explain ANY THREE types of grippers with neat diagrams.	14M	CO1	L2
		UNIT-II			
3.		Define forward and reverse kinematics of robot and derive forward and			
		inverse robot kinematic equations for a 2DOF system?	14M	CO2	L2
		OR			
4.		Derive an equation for representation of pure rotation about an axis.	14M	CO2	L2
		UNIT-III			
5.		Define trajectory planning? Write a shot note on types of trajectory			
		planning.	14M	CO3	L2
		OR			
6.		Write down steps involved in trajectory planning with an example	14M	CO3	L2
		UNIT-IV			
7.		Define sensor? Briefly explain the working principle of ANY TWO types of			
٠.		contact type sensors with a neat sketch.	14M	CO4	L2
		OR			
8.	a)	Explain briefly about the following terms:			
	,	Electrical actuators	7M	CO4	L2
	b)	Mechanical actuators	7M	CO4	
	,				
		UNIT-V			
9.		Explain modes of robot programming?	14M	CO5	L2
		OR			
10.		Explain briefly about the following terms:			
		(i) On-line Programming	7M	CO5	L2

(i) On-line Programming CO5 L2 (ii) Off-line Programming 7M

2.

3.

4.

5.

6.

7.

8.

9.

10.

Hall Ticket Number :						Γ	_
• • • • • • • • • • • • • • • • • • • •						R-19	

Code: 19A352T

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2023

		iii b. recri. i serriesiei supplementary examinations nov/dec .	2023		
		Machine Tools			
		(Mechanical Engineering)			
			ne: 3 F		
	Ans	swer any five full questions by choosing one question from each unit (5x14: ***********************************	= 70 M		
		UNIT-I	Marks	СО	BL
•		Draw the Merchant circle diagram and derive the expressions to show the relationship among the different forces acting on the cutting tool and			
		different parameters involved in metal cutting?	14M	CO2	L4
			ITIVI	002	
	,	OR	-14	004	
•	a)	Explain about ASA system in detail.	5M	CO1	L1
	b)	List out the various types of cutting tool materials and its properties?	9M	CO1	L1
		UNIT-II			
		What is the basic difference between Tail stock and Turret in Lathe			
		machine? Draw the hexagonal turret used in Lathe machine.	14M	CO2	L2
		OR			
	a)	Describe any two work holding devices used in Lathe. With neat sketches?	7M	CO2	L1
	b)	List out the various types of Dead centers in Lathe machine? Explain any			
	υ,	two with neat sketches.	7M	CO2	I 1
		UNIT-III			
		Discuss in detail the working of an open and cross belt type Planning			
		machine. With neat sketch	14M	CO3	L3
		OR			
	a)	Explain up Milling and down Milling with neat sketches	7M	CO3	L2
	b)	Define Indexing. Explain the following Indexing methods.			
		(i) Direct Indexing (ii) Simple Indexing	7M	CO3	L2
		UNIT-IV			
,		How do you classify Grinding machines? Explain about Centre less			
•		Grinding machine with neat sketch.	14M	CO4	L1
		OR			
	a)	Predict at least one Micro Finishing method and explain it in detail	7M	CO5	L3
•	•	·			
	b)	Explain about Buffing and Polishing operations?	7M	CO5	L2
		UNIT-V		0.0-	
		List out the various types Drill Bushes explain any two with neat sketches?	14M	CO5	L2
		OR			

Explain the 3-2-1 Principle with neat sketch

14M CO₅ L₂

ripieting your answers. Computsonly draw diagonal cross line on the remaining plank pages.	vealing of identification, appeal to evaluator and/or equations written eg. 32+8=40, will be treated as malpra	2.
e ou lue	s written e	
agoriai cross iiri	and/or equations	4.
oriiy draw dig	o evaluator a	5.
s. Corribuis	on, appeal t	6.
aliswel	ntificatio	7.
n completing your	ā	8.
Note: I. C	2. Any	9.
Italii Noi		10.

Hall Ticket Number :							10
Code: 19A35IT						K-	19

		III B.Tech. I Semester Supplementary Examinations Nov/Dec 2	2023		
		Rapid Prototyping			
		(Mechanical Engineering)			
			ne: 3 F		
	Ans	swer any five full questions by choosing one question from each unit (5x14 = ***********************************	= /U M	arks)	
			Marks	СО	BL
		UNIT-I			
1.		List and explain various Rapid Prototyping Data Formats? And also explain			
		about the significance of STL format?	14M	CO1	L2
		OR			
2.	a)	What is the need for additive manufacturing system, Explain?	7M	CO1	L1
	b)	Define virtual prototyping and its applications	7M	CO1	L1
		UNIT-II			
3.		With a neat sketch, explain the construction and operation of SGC			
		technique and also list advantages and disadvantages of it.	14M	CO2	L2
		OR			
4.	a)	Explain the working principle of stereo lithography system with neat sketch	7M	CO2	L2
	b)	How photo polymerizations works. Describe with a neat sketch.	7M	CO2	L5
		UNIT-III			
5.		Explain about the laser engineering net shaping (LENS) with their			
		applications, advantages and limitations.	14M	CO3	L2
		OR			
6.		Explain the principle, process parameters and applications of 3D Printing.	14M	CO3	L2
		UNIT-IV			
7.		Analyze reverse engineering technique with respect to digitization and explain	14M	CO4	L4
		OR			
8.	a)	Distinguish between active and passive techniques in reverse engineering.	7M	CO4	L2
	b)	How the 3D-photogram used in reverse engineering process? Explain with			
	ω,	suitable example.	7M	CO4	L5
		•			
		UNIT-V			
9.		Write few industrial applications of RP process	14M	CO5	L1
		OP			

OR

Elaborate Pre-processing errors in SLS process. 10.

14M CO5 L4

2 - J 40 \ 25177						J	R-19	
Hall Ticket Number :								_

Code: 19A35HT

III B.Tech. I Semester Supplementary Examinations Nov/Dec 2023

		III B.Tech. I Semester Supplementary Examinations Nov/Dec	2023		
		Automation & Robotics			
		(Mechanical Engineering)			
			ne: 3 F		
	An	swer any five full questions by choosing one question from each unit (5x14)	= 70 M	arks)	
			Marks	СО	BL
		UNIT-I			
1.		What are the basic elements of an automation? Explain them.	14M	CO1	L2
		OR			
2.	a)	Explain the following			
		(i) Starving of stations			
		(ii) Blocking of Stations	7M	CO1	L2
	b)	Briefly explain the analysis of a flow line without buffer storage	7M	CO1	L2
	,				
		UNIT-II			
3.	a)	What is Line Balancing.? Classify line balancing methods.	7M	CO2	I 1
0.	b)	Write short notes on Flexible manual assembly lines		CO2	
	D)	OR	<i>1</i> IVI	002	LI
4					
4.		Discuss the procedure of Largest candidate rule of Line balancing with relevant example	1 <i>4</i> M	CO2	12
		relevant example	17171	002	LZ
		UNIT-III			
_					
5.		Explain the types of Robot coordinate systems(configurations) with neat sketches	1 <i>4</i> M	CO3	12
		OR	17171	000	LZ
6	2)		7M	CO3	L2
0.	a)	Explain the functional line diagrams in Robot			
	b)	State the advantages and disadvantages of Robot	7M	CO3	L2
_		UNIT-IV			
7.		Explain the Langrange-Euler formulation for a 2 degree of freedom robot.	14M	CO4	L2
		OR			
8.	a)	What are homogeneous transformations in Robot kinematics?	7M	CO4	L1
	b)	For a vector 20 i + 25 j + 10 k, perform a translation by a distance of 8 units			
		in x direction, 7 units in y direction and 4 units in z direction.	7M	CO4	L4
		UNIT-V			
9.	a)	Discuss the working principle of Pneumatic actuators	7M	CO5	L2
	b)	With a sketch explain the working of proximity sensors.	7M	CO5	L2
		OR			
10.	a)	Distinguish between tactile sensing and proximity sensing.	7M	CO5	L4

Outline the need for position sensing and velocity sensing in robotics

7M

CO₅

L3

	R-19
Hall Ticket Number :	

Code: 19A351T

		III B.Tech. I Semester Supplementary Examinations Nov/Dec 2	2023		
		Applied Thermodynamics-II			
		(Mechanical Engineering)			
		ax. Marks: 70 In swer any five full questions by choosing one question from each unit (5x14: ************************************	ne: 3 H = 70 M		
٦ ع			Marks	СО	BL
<u> </u>	,	UNIT-I			
g 1	. a)	A simple Rankine cycle works between pressure of 25bar and 0.04bar. The	01/1	CO1	1.2
מממ	h)	initial condition of steam being dry saturated. Calculate the cycle efficiency.	8M 6M	CO1	L3
<u> </u>	b)	Define mean temperature of heat addition. OR	OIVI	CO1	L1
² ▶ 2		Explain with the help of neat diagram a Regenerative cycle.	14M	CO1	L2
, <u> </u>	•		14101	COT	LZ
 		UNIT-II			
D =	. a)	A boiler uses 14 kg of air per kg of fuel. The temperature of the hot gasses inside the chimney is 597°C and the outside air is 17°C. If the draught produced is 26 mm of water. Determine the minimum height of the chimney			
<u>=</u>		required.	8M	CO2	L4
2	b)	Sketch and explain dead weight safety valve.	6M	CO2	L2
פקעמנוסווט איוונפ		OR			
	. a)	Illustrate about fusible plug.	5M	CO2	L3
<u>g</u>	b)	Discuss the merits and demerits of forced draught over natural draught.	9M	CO2	L2
dalo		UNIT-III			
5		Derive the expression for condition of maximum discharge through nozzle.	14M	CO3	L6
2		OR			
6	. a)	Classify nozzles with suitable diagrams.	7M	CO3	L4
์ -	b)	Explain critical pressure ratio of a nozzle?	7M	CO3	L2
במוני		UNIT-IV			
7	•	The absolute pressure in the condenser is 11.56 kPa when the barometer reads 1 bar. The condenser temperature is 40°C. Calculate the partial pressure of air, vacuum efficiency and mass of air present in the condenser			
<u></u>		per kg of steam.	14M	CO4	L3
20 Section 9 Or 10 Section 9 O		OR			
8	. a)	Differentiate jet condensers with surface condensers.	7M	CO4	L4
į	b)	Classify the steam condensers.	7M	CO4	L4
		UNIT-V			
9		Define degree of reaction and show that for Parsons reaction turbine it is 50%.	14M	CO5	L3
		OR			
10	. a)	Explain velocity compounding in steam turbines with neat sketch	8M	CO5	L2

Compare impulse turbine with reaction turbine.

CO₅

6M

L5