\square
Hall Ticket Number :

Code: 19A453T

R-19

III B.Tech. I Semester Supplementary Examinations March/April 2023

Digital Communication

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Write in detail about the drawbacks of Delta modulation
b) Describe the Bandwidth requirements of PCM 7M

OR

2. a) Explain the need of Adaptive Delta modulation with neat sketch
b) Describe in detail about Differential PCM 7M

UNIT-II

3. a) Explain in detail about the Non-Coherent detection of FSK 7M
b) Describe about the generation of Phase shift Keying with neat diagram 7M

OR

4. a) Explain in detail about M -ary signaling
b) Describe the BASK modulation technique with the help of a neat diagram. 7M

UNIT-III

5. a) Define the following i)Information ii) Entropy iii) Rate of Information iv) Channel Capacity
b) Explain the following terms i) Fixed length coding ii) Variable length coding 7M

OR

6. a) Identify the Mutual Information for a Binary Erasure channel
b) Design a Binary Symmetric channel and find its channel capacity 7M

UNIT-IV

7. a) Describe about matrix description of Linear Block Codes
b) Describe about Error detection and correction capabilities of Linear block codes

OR

8. a) Apply Shannon-Fano coding procedure for the message ensemble and find the efficiency of the channel $\mathrm{P}=[0.4,0.2,0.12,0.08,0.08,0.08,0.04$]
b) Apply Lempel-Ziv code for a message sequence 1010110110110.

UNIT-V

9. a) Explain the Tree Diagram of Convolutional Codes
b) Describe in detail about Cyclic codes

OR

10. a) For a $(2,1,3)$ Convolution encoder if $g_{1}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right] g_{2}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ then draw the TREE diagram 7 M
b) Identify the output for a convolutional code of $(3,1,3)$ with $g_{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \quad g_{2}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ $g_{3}=[110]$ for an input message sequence 100110 using Transform domain Approach

Hall Ticket Number :

Code: 19A453T

R-19

III B.Tech. I Semester Supplementary Examinations March/April 2023

Digital Signal Processing

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) If the $\operatorname{DFT}\{x(n)\}=X(k)=\{4,-j 2,0, j 2\}$, using properties of DFT, find DFT of $x(n-2)$.
b) Find the N-point DFT of a sequence $x(n)=\{1,1,2,2\}$

7M CO1
7M CO1

OR

2. Examirie the properties linearity and time invariance of the given systems.
a. $y(n)=x(2 n)$
b. $y(n)=x(n) x(n-1)$

14M CO1 L4

UNIT-II

3. a) List the differences and similarities between DIT and DIF algorithms.
b) Calculate the number of multiplications needed in the calculation of DFT and
FFTwith 64 point sequence.
b) Calculate the number of multiplications needed in the calculation of DFT and
FFTwith 64 point sequence.

7M CO1

OR

4. Compute the IDFT of the following sequences using DIT algorithm $X(k)=\{16,1-j 4.4142,0,1+j 0.4142,0,1-j 0.4142,0,1+j 4.4142\}$

UNIT-III

5. Determine the cascade and parallel form realization of the following system $y(n)=-0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$

14M CO2
OR
6. Summarize the steps in the design of IIR filter using bilineartransformation for any one type of filter?

14M CO2 L5

UNIT-IV

7. Explain the applications of Multi Rate Signal Processing.

14M CO3 L2

OR

8. a) Discuss Decimation by a factor D

7M CO3
L1
b) Explain the concept of Sampling rate conversion by a rational factor I/D.
$7 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 2$

UNIT-V

9. What are the major blocks in Musical sound processing? Explain briefly.

14M CO4 L1
OR
10. What are the applications of DSP? Explain any one application clearly.
14M CO4 L1

Hall Ticket Number :

\square

Code: 19A45BT

R-19

III B.Tech. I Semester Supplementary Examinations March/April 2023
Advanced Digital Design Concepts
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Maks co bl

UNIT-I

1. a) Design a CMOS transistor circuit for 2-input NAND gate and explain its operation

7M CO1 L6
b) Differentiate CMOS with TTL logic families.

7M CO1 L2

OR

2. a) Recall various TTL logic families.

7M CO1 L1
b) Design a CMOS transistor circuit for 2-input XOR gate and explain its operation

7M CO1 L6

UNIT-II

3. Summarize about VHDL Design flow with neat sketches.

OR

4. Design a Full adder using component declaration in VHDL.

14M CO2 L2

14M CO2 L6

UNIT-III

5. a) Differentiate concurrent and sequential signal assignment statements with an example.
b) Explain delay models- Inertial delay model, Transport delay model with examples.

7 M CO3 L2
$7 \mathrm{M} \mathrm{CO3} \mathrm{L2}$

OR

6. a) Illustrate a VHDL model for 2×4 decoder using Dataflow model.

7 M CO3 L4
b) Describe the Syntax of Process Statement.

7 M CO3 L2

UNIT-IV

7. a) Explain about 3×8 decoder with neat sketches.

7M CO4 L6
b) Describe the architecture of multiplier with neat sketches.
$7 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

OR

8. a) Design 8×1 Mux using 4×1 Mux.

7M CO4 L6
b) List out the advantages of Combinational Circuits

7M CO4 L1
9. Summarize about Synchronous design methodology? $\quad 14 \mathrm{M}$ CO5 L2

OR
10. a) Design T flip-flop using JK Flip-Flop. 8M CO5 L6
b) Determine the Characteristic equations of SR and T-Flip-Flops.
$6 \mathrm{M} \mathrm{CO5}$ L3

Code: 19A452T

R-19

III B.Tech. I Semester Supplementary Examinations March/April 2023

Antennas and Wave Propagation

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define an antenna? Give the list of Antenna parameters.

5M CO1
b) Define the following terms with mathematical expressions:
i. Radiation pattern. ii. Radiation Intensity iii. Beam Solid angle

9M CO1

OR

2. a) Discuss about the Radiation Mechanism with neat sketches.
b) Derive the relation between Directivity and effective aperture of an antenna.
$6 \mathrm{M} \mathrm{CO1}$
L2

UNIT-II

3. a) Derive the expression for the far field pattern of an array of 2-isotropic point sources with:
i) Equal amplitude and phase ii) Equal amplitude and opposite phase

10M
CO2
L2
b) Give the details about the Parasitic Array.

OR

4. a) Derive an Expression of array factor for an n-element uniform array.
b) List the Hanson-Wood yard conditions for increasing the Directivity.

UNIT-III

5. a) A parabolic reflector having the diameter of 2.1 m and used at 9 GHz . Calculate the gain.
b) Mention different methods of feeds of parabolic reflector antennas. And explain any two of them.

OR

6. a) Draw and explain about the working principle of Helical antenna.
b) Calculate the directivity (dB) of 20 turns, having $\alpha=120$ Circumference equal to wavelength of helical Antenna

CO 3
wavelength of helical Antenna

UNIT-IV

7. a) Discuss the plane earth reflections in ground wave propagation.
b) Describe the Transition between surface and space wave.

OR

8. Discuss curved earth reflections with necessary equations

14M CO4 L2

UNIT-V

9. a) Briefly explain the Tropospheric propagation and multi-hop propagation.
b) Define fading? Explain it.
$4 \mathrm{M} \mathrm{CO} 3 \quad \mathrm{~L} 3$

10M CO4 L2
4 M CO4 L2

10M CO4 L2
4 M CO4 L1

OR

10. a) Discuss about the refraction wave propagation mechanism due to presence and
absence of Earth magnetic fields.
b) Memorize the details about Take-off angle
