Hall Ticket Number :						
						R-19

Code: 19A453T

III B.Tech. I Semester Supplementary Examinations March/April 2023

Digital Communication

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 70

	F	Answer <i>any five full questions</i> by choosing one question from each unit (5x14 = 70 M	arks)
		*****	Marks
		UNIT-I	
1.	a)	Write in detail about the drawbacks of Delta modulation	7M
	b)	Describe the Bandwidth requirements of PCM	7M
		OR	
2.	a)	Explain the need of Adaptive Delta modulation with neat sketch	7M
	b)	Describe in detail about Differential PCM	7M
		UNIT-II	
3.	a)	Explain in detail about the Non-Coherent detection of FSK	7M
	b)	Describe about the generation of Phase shift Keying with neat diagram	7M
		OR	
4.	a)	Explain in detail about M-ary signaling	7M
	b)	Describe the BASK modulation technique with the help of a neat diagram.	7M
		UNIT-III	
5.	a)	Define the following i)Information ii) Entropy iii) Rate of Information iv) Channel	
		Capacity	7M
	b)	Explain the following terms i) Fixed length coding ii) Variable length coding	7M
•	,	OR	71 4
6.	a)	Identify the Mutual Information for a Binary Erasure channel	7M
	b)	Design a Binary Symmetric channel and find its channel capacity	7M
_	- \	UNIT-IV	78.4
7.	a)	Describe about matrix description of Linear Block Codes	7M
	b)	Describe about Error detection and correction capabilities of Linear block codes	7M
•	- \	OR	
8.	a)	Apply Shannon–Fano coding procedure for the message ensemble and find the efficiency of the channel P=[0.4,0.2,0.12, 0.08, 0.08, 0.08, 0.04]	7M
	b)	Apply Lempel-Ziv code for a message sequence 10101101101.	7 IVI 7M
	b)		/ IVI
۵	a)	UNIT-V Explain the Tree Diagram of Convolutional Codes	7M
9.	a) b)	Describe in detail about Cyclic codes	7 IVI 7M
	D)	OR	/ IVI
10	3)		7M
10.	a) b)	For a $(2,1,3)$ Convolution encoder if $g_1=[1\ 1\ 0]$ $g_2=[1\ 0\ 1]$ then draw the TREE diagram Identify the output for a convolutional code of $(3,1,3)$ with $g_1=[1\ 1\ 1]$ $g_2=[1\ 0\ 0]$	/ IVI
	IJ)	g_3 =[1 1 0] for an input message sequence 100110 using Transform domain Approach	7M

Hall Ticket Number: R-19 Code: 19A453T III B.Tech. I Semester Supplementary Examinations March/April 2023 **Digital Signal Processing** (Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) BL UNIT-I 1. a) If the DFT $\{x(n)\} = X(k) = \{4, -j2, 0, j2\}$, using properties of DFT, find DFT of x(n - 2). 7M CO₁ L1 Find the N-point DFT of a sequence $x(n) = \{1, 1, 2, 2\}$ 7M CO1 L1 2. Examine the properties linearity and time invariance of the given systems. a. y(n) = x(2n)y(n) = x(n)x(n-1)14M CO1 L4 UNIT-II 3. a) List the differences and similarities between DIT and DIF algorithms. 7M CO1 L1 b) Calculate the number of multiplications needed in the calculation of DFT and FFTwith 64 point sequence. 7M CO1 L3 OR Compute the IDFT of the following sequences using DIT algorithm 4. $X(k)=\{16,1-i4.4142,0,1+i0.4142,0,1-i0.4142,0,1+i4.4142\}$ 14M CO1 L6 UNIT-III 5. Determine the cascade and parallel form realization of the following system y(n)=-0.1y(n-1) +0.2y(n-2) +3x(n)+3.6x(n-1) +0.6x(n-2)14M CO₂ L₅ Summarize the steps in the design of IIR filter using bilinear transformation for 6. any one type of filter? 14M CO₂ L₅ **UNIT-IV** 7. Explain the applications of Multi Rate Signal Processing. 14M CO3 L2 OR 8. a) Discuss Decimation by a factor D CO₃ L1 Explain the concept of Sampling rate conversion by a rational factor I/D. 7M CO3 L2 b) UNIT-V 9. What are the major blocks in Musical sound processing? Explain briefly. 14M CO4 L1 OR 10. What are the applications of DSP? Explain any one application clearly. 14M CO4 L1

Hall Ticket Number:						
						R-19

Code: 19A45BT

III B.Tech. I Semester Supplementary Examinations March/April 2023

Advanced Digital Design Concepts

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	CO	BL
		UNIT-I			
1.	a)	Design a CMOS transistor circuit for 2-input NAND gate and explain its operation	7M	CO1	L6
	b)	Differentiate CMOS with TTL logic families.	7M	CO1	L2
		OR			
2.	a)	Recall various TTL logic families.	7M	CO1	L1
	b)	Design a CMOS transistor circuit for 2-input XOR gate and explain its operation	7M	CO1	L6
		UNIT-II			
3.		Summarize about VHDL Design flow with neat sketches.	14M	CO2	L2
		OR			
4.		Design a Full adder using component declaration in VHDL.	14M	CO2	L6
		UNIT-III			
5.	a)	Differentiate concurrent and sequential signal assignment statements with an example.	7M	CO3	L2
	b)	Explain delay models- Inertial delay model, Transport delay model with examples.	7M	CO3	L2
	,	OR			
6.	a)	Illustrate a VHDL model for 2 x 4 decoder using Dataflow model.	7M	CO3	L4
	b)	Describe the Syntax of Process Statement.	7M	CO3	L2
	-,	•			
		UNIT-IV			
7.	a)	Explain about 3x8 decoder with neat sketches.	7M	CO4	L6
	b)	Describe the architecture of multiplier with neat sketches.	7M	CO4	L2
	-,	OR			
8.	a)	Design 8X1 Mux using 4x1 Mux.	7M	CO4	L6
0.	b)	List out the advantages of Combinational Circuits	7M	CO4	_0 L1
	٠,	List out the durantages of combinational enounc	7.141	001	
		UNIT-V			
9.		Summarize about Synchronous design methodology?	14M	CO5	L2
		OR			
10.	a)	Design T flip-flop using JK Flip-Flop.	8M	CO5	L6
	b)	Determine the Characteristic equations of SR and T-Flip-Flops.	6M	CO5	L3

Hall Ticket Number :							_
Code: 19A452T						R-19	

III B.Tech. I Semester Supplementary Examinations March/April 2023

Antennas and Wave Propagation

(Electronics and Communication Engineering)

Max. Marks: 70

		Answer any five full questions by choosing one question from each unit $(5x14 = 7)$. 3 по 70 Mar		
		*****	Marks	СО	BL
		UNIT-I			
1.	a)	Define an antenna? Give the list of Antenna parameters.	5M	CO1	L1
	b)	Define the following terms with mathematical expressions:			
		i. Radiation pattern. ii. Radiation Intensity iii. Beam Solid angle	9M	CO1	L1
		OR			
2.	a)	Discuss about the Radiation Mechanism with neat sketches.	6M	CO1	L2
	b)	Derive the relation between Directivity and effective aperture of an antenna. UNIT-II	8M	CO1	L2
3.	a)	Derive the expression for the far field pattern of an array of 2-isotropic point sources with:			
		i) Equal amplitude and phase ii) Equal amplitude and opposite phase	10M	CO2	L2
	b)	Give the details about the Parasitic Array.	4M	CO2	L1
	,	OR			
4.	a)	Derive an Expression of array factor for an n-element uniform array.	10M	CO2	L2
	b)	List the Hanson-Wood yard conditions for increasing the Directivity.	4M	CO2	L1
	٠,	UNIT-III			
5.	a)	A parabolic reflector having the diameter of 2.1m and used at 9GHz. Calculate the gain.	6M	CO3	L1
	b)	Mention different methods of feeds of parabolic reflector antennas. And explain any two of them.	8M	CO3	L1
		OR			
6.	a)	Draw and explain about the working principle of Helical antenna.	10M	CO3	L4
	b)	Calculate the directivity (dB) of 20 turns, having =120 Circumference equal to			
		wavelength of helical Antenna	4M	CO3	L3
		UNIT-IV			
7.	a)	Discuss the plane earth reflections in ground wave propagation.	10M	CO4	L2
	b)	Describe the Transition between surface and space wave.	4M	CO4	L2
		OR			
8.		Discuss curved earth reflections with necessary equations	14M	CO4	L2
		UNIT-V			
9.	a)	Briefly explain the Tropospheric propagation and multi-hop propagation.	10M	CO4	L2
	b)	Define fading? Explain it.	4M	CO4	L1
		OR			
10.	a)	Discuss about the refraction wave propagation mechanism due to presence and			
		absence of Earth magnetic fields.	10M	CO4	L2
	b)	Memorize the details about Take-off angle	4M	CO4	L3

Time: 3 Hours