Code: 19A454T

III B.Tech. I Semester Supplementary Examinations July 2022

Digital Communication

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Draw the block diagram of a PCM system and explain each block in detail.
b) Derive an expression for channel noise and quantization noise in DM system.

OR

2. a) Derive the relation for signaling rate and transmission bandwidth in a PCM system.
b) What are the problems encountered in linear delta modulation and explain in detail.

UNIT-II

3. a) Show that the approximate transmission bandwidth for FSK is given by $B_{T}=2 R(1+h / 2)$ where ' h ' is the digital modulation index and ' R ' is the bit rate.
b) Explain with neat block diagram the generation and recovery of DPSK signals.

OR

4. a) Write the comparisons among binary modulated band pass signaling scheme (ASK, PSK and FSK).
b) The bit stream 11011100101 is to be transmitted using DPSK. Determine the encoded sequence and the transmitted phase sequence.

UNIT-III

5. a) Explain the two important implications of Shannon-Hartley theorem.
b) An information sources produce sequences of independent symbols having the following probabilities.

A	B	C	D	E	F	G
$1 / 3$	$1 / 27$	$1 / 3$	$1 / 9$	$1 / 9$	$1 / 27$	$1 / 27$

using Shannon-Fano procedure.
i. Construct a binary code.
ii. Determine the efficiency and redundancy.

OR

6. Prove that the rate of information transfer over the channel capacity is given by $\mathrm{D} t=[H(X)-H(X / Y)] \mathrm{rs}$ bits/sec.

UNIT-IV

7. The parity check bits of a $(8,4)$ block code are generated by

$$
\begin{aligned}
& \mathrm{C} 5=\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 4 \\
& \mathrm{C} 6=\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3 \\
& \mathrm{C} 7=\mathrm{d} 1+\mathrm{d} 3+\mathrm{d} 4 \\
& \mathrm{C} 8=\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4
\end{aligned}
$$

where $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3$ and d 4 are message bits. Find:
(a) the generator matrix and parity check matrix for this code.
(b) the minimum weight of this code.

OR

8. a) Show that the minimum Hamming distance of a linear block code is equal to the minimum number of columns of its parity check matrix that are linearly dependent show also that the minimum Hamming distance of a Hamming code is always equal to 3 .
b) Explain applications of block codes for error control in data storage systems.

UNIT-V

9. Consider a $(6,3)$ generator matrix. $G=\left|\begin{array}{lll|lll}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right|$
Find
(a) all the code vectors of this data.
(b) the parity check matrix for this code.
(c) the minimum weight of this code.

OR

10. a) What is a convolution code? How it is generated. 7M
b) Explain in detail the convolution coder with a suitable diagram.
\square

III B.Tech. I Semester Supplementary Examinations July 2022

Digital Signal Processing

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) (i) Determine the continuous time convolution of $x(t)$ and $h(t)$.

$$
x(t)=u(t+1)-u(t-1), h(t)=u(t+1)-u(t-1)
$$

(ii) Find the Fourier series of the signal represented below.

$$
x(t)=1+\sin \omega_{0} t+2 \cos \omega_{0} t+2 \cos \left(2 \omega_{0} t+\frac{\pi}{4}\right)
$$

b)

$$
X\left(e^{j 0}\right)=\sum_{n=-\infty}^{\infty} x[n]
$$

Find the numerical value of $A=\sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n}$

OR

2. a) (i) Perform the circular convolution of the following two sequences:
$x_{1}(n)=\{2,1,2,1\}, \quad x_{2}(n)=\{1,2,3,4\}$
(ii) Explain Parseval's theorem in DFT.

7M CO1 L3, L2
b) (i) Write the difference between linear convolution and circular convolution.
(ii) Find the 4-point DFT of the sequence $x(n)=\cos \left(\frac{n \pi}{4}\right)$.

UNIT-II

3. a) Explain how the IDFT can be computed through FFT algorithm.
b) An 8-point sequence is given by $x(n)=\{2,2,2,2,1,1,1,1\}$. Compute the 8 -point DFT by radix-2 DIT FFT algorithm.

OR

4. a) (i) Calculate the percentage saving in calculation in 256-point radix-2 FFT, compared to the direct FFT.
(ii) Compare the radix-2 DIT FFT and DIF FFT.
b) Compute the circular convolution of the following sequences using radix-2 DIT FFT algorithm.
$x_{1}(n)=\{1,2,1,2\}, \quad x_{2}(n)=\{4,3,2,1\}$

UNIT-III

5. a) For the mentioned below specification design a low pass IIR digital Butterworth filter using bilinear transformation

$$
\begin{array}{rrr}
0.8 \leq H\left(e^{j \omega}\right) \leq 1 & & 0 \leq \omega \leq 0.3 \pi \\
H\left(e^{j \omega}\right) \leq 1 & & 0.6 \pi \leq \omega \leq \pi
\end{array}
$$

b) Explain mathematically how the signal can be detected buried in noise by using FIR filter.

7M CO2
6. a) (i) Compare between IIR and FIR filter?
(ii) How the best window is decided for design of FIR filter by windowing method?
(iii) What is Gibb's oscillation and how it can be avoided?
(iv) What is Butterworth filter?
b) Design an ideal differentiator with frequency response as mentioned below:

$$
H\left(e^{j \omega}\right)=j \omega e^{\frac{-j \omega N}{2}} \quad-\pi \leq \omega \leq \pi
$$

Use Hamming window with $\mathrm{N}=5$.

UNIT-I

7. a) Consider an i/p sequence $x(n)=\left(\frac{1}{2}\right)^{n} u(n)$ feed to the down sampler with a down sampling by a factor of 2 . Determine the o / p spectrum $Y\left(e^{j \omega}\right)$.
b) Proof that the up-sampler and down-sampler are linear.

OR

8. a) Show that the two systems shown in below Fig. (Where k is some integer) are equivalent. Assume that $h_{k}(n)=h_{0}(n) \cos \left(\frac{2 \pi n k}{L}\right)$.

b) (i) Where multirate signal processing used?
(ii) What is fractional sampling rate conversion?
(iii) Find the relation between i / p and o / p of a fractional rate conversion.

7M CO3

UNIT-I

9. a) Explain the idea behind signal compression. Explain briefly about one method for signal compression.

7M CO4
b) What are the differences between the stationary and non-stationary signals? What parameters are used to define the non-stationary signals and define them?

7M CO4
L1, L3

OR

10. a) (i) Considering an oversampling ADC system with maximum analog signal frequency of 4 kHz and ADC resolution of eight bits, determine the oversampling rate to improve the ADC resolution to 12-bit resolution.
(ii) What information is obtained from the spectrum of the signal?
b) Explain the different blocks musical sound processing.

Hall Ticket Number :										

Code: 19A45FT
III B.Tech. I Semester Supplementary Examinations July 2022

Electronic Measurements and Instrumentation

(Electronics and Communication Engineering)

Max. Marks: 70
\title{ Answer any five full questions by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$) }

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. Describe the different types of errors in measurement.

14M CO1
OR
2. Explain the working ramp type \& dual slope integrator based digital voltmeters.

14M CO1
3. $\begin{aligned} & \text { UNIT-II } \\ & \text { 3. Illustrate the working of sweep frequency } \\ & \text { relevant diagram. }\end{aligned}$
$\begin{array}{lllll} \\ \text { OR }\end{array}$
4. Describe the wave analor and draw the

UNIT-III

5. Show the working mechanism of dual trace oscilloscope with the help of neat circuit diagram.

OR

6. Elaborate the measurement procedure of the voltage and frequency using cathode ray oscilloscope.

UNIT-IV

7. Explain the principle of Wheatstone bridge, also describe about guarded Wheatstone bridge.

OR

8. Discuss the working principle of Q -meter

14M CO4

UNIT-V

9. Explain the principle of strain gauge using neat diagram.

14M CO5
OR
10. Describe the displacement transducer.

14M CO5
\square

Code: 19A451T

R-19

III B.Tech. I Semester Supplmentary Examinations July 2022

Microprocessors \& Interfacing

(Electronics and Communication Engineering)

Max. Marks: 70
 Time: 3 Hours
 Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. With a neat sketch describe in detail the architecture and working of 8086 microprocessor.
b) Explain the following addressing modes of 8086 with suitable examples:
(i) Direct addressing
(ii) Immediate addressing
$6 \mathrm{M} \quad 1$

UNIT-II
3. Illustrate the pin configuration of 8086 microprocessor and explain about the $14 \mathrm{M} \quad 2$

OR

4. a) Discuss about the minimum mode operation of 8086 with relevant block diagram.
b) What is DMA controller? Explain how DMA operations are performed.

UNIT-III

5. Draw and explain the architecture of 8255 and also explain the various modes of operation.

OR

6. a) What are the advantages of 8259 ? With a neat sketch explain the interfacing of cascaded 8259s with 8086.

7M 2
3
b) Explain in detail about the interrupt structure of 8086 .

7M 2

UNIT-IV

7. Elaborate about
i) TTL to RS232C conversion
ii) RS232C to TTL conversion

OR

8. a) Discuss the necessity of communication interfaces in detail.

7M 3
b) What is an 8253 programmable interval timer/counter? Explain its Architecture.

7M 3

UNIT-V

9. a) Distinguish between Pentium and Pentium pro processors.
b) Write about the salient features of 80386 .

OR

10. a) Discuss in brief about Pentium Pro processor.

7M 4
b) What is the need of advanced processors, give suitable example with necessary diagram?
\square
Code: 19A45BT

R-19

III B.Tech. I Semester Supplementary Examinations July 2022

Advanced Digital Design Concepts

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO $\underset{\substack{\text { Blooms } \\ \text { Level }}}{\text { Co }}$

UNIT-I

1. a) Design a CMOS transistor circuit for 2-input $X O R$ gate and explain its operation

7M CO1
b) Distinguish CMOS with TTL logic families.

7M CO1

OR

2. Explain in detail about dynamic electrical behavior of CMOS.

14M CO1

UNIT-II

3. a) Explain component instantiation in VHDL?

4M CO2
b) Design a 16X1 Multiplexer with 4X1 Multiplexers.

10 M CO2

OR

4. Explain in detail about the operators in VHDL with examples?

14M CO2

UNIT-III

5. a) Analyze the various abstraction levels in VHDL

9M CO3
b) Distinguish concurrent and sequential signal assignment statements with an example.

5M CO3

OR

6. a) Explain delay models- Inertial delay model, Transport delay model with examples.

8 M CO 3
b) Design 3 to 8 decoder using case statement in VHDL.

6 M CO 3

UNIT-IV

7. a) Design a 4-bit comparator in behavior model using VHDL syntax.

8M CO4
b) Explain barrel shifter with neat diagram?

6 M CO4

OR

8. Design a 16- Bit-ALU which can perform minimum of 16 operations.

14M CO4

UNIT-V

9. a) Write a VHDL program for Master slave JK - FF.

10M CO5
b) Distinguish Latches and Flipflops
$4 \mathrm{M} \quad \mathrm{CO} 5$

OR

10 Discuss about Synchronous design methodology?

Code: 19A441T

II B.Tech. II Semester Supplementary Examinations July/August 2022

Analog IC Applicaitons

(Electronics and Communication Engineering)

Max. Marks: 70 (Time: 3 Hours		
		Maks	co	$\underset{\substack{\text { Bloms } \\ \text { Level }}}{\text { col }}$
	UNIT-I			
1. a) Describe the internal block diagram of an Op-amp and explain each block in detail.		10M	CO1	
b)	Draw and explain the pin diagram of Ic741.	4 M	col	
OR				
2. a)	What is an IC? List out the IC Classifications and Explain	8M	CO1	
	Design a non-inverting Op Amp with gain -120.	6M	col	
b)	UNIT-II			
3. a)	Illustrate the operation of Subtractor circuit using IC 741.	7M	CO2	
	Explain the operation of current to voltage converter using Op-Amp. OR	7M	$\mathrm{CO2}$	
4. a)	Examine the output of Op-amp integrator circuit for an applied unit step input and sine input signal	7M	CO2	
b)	Illustrate the operation of basic Integrator circuit using op-amp	7M	CO2	
	UNIT-III			
5. a)	Illustrate the operation of Schmitt Trigger circuit using IC 741.	7M	CO3	
	Explain the operation of Precision Half-wave Rectifier.	7M	co3	
	OR			
6. a)	Explain how astable multivibrator can be used as Square wave generator.	9 M	CO3	
	Design an astable multivibrator for output frequency of 1 KHz	5M	co3	
	UNIT-IV			
7. a)	Explain the basic principle of operation using block schematic of a PLL.	8M	CO4	
	Discuss how PLL can be used for AM demodulation.	6M	CO4	
	OR			
	List the applications of astable multivibrator and explain in detail.	14M	CO4	
	UNIT-V			
9. a)	What is the main disadvantage of Flash ADC? And With the help of a neat diagram explain its operation.	8M	CO5	
b)	With help of neat diagram explain the operation of counter type ADC.	6 M	CO5	
	OR			
	Classify the types of ADC and Explain the principle of operation of dualSlope ADC with necessary diagrams.	14 M	co	

\square

Code: 19A452T

III B.Tech. I Semester Supplementary Examinations July 2022

Antennas and Wave Propagation

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the development of dipole antenna from a transmission line, with a diagram.

5M CO1
L1
b) Derive the field components of HWD and hence obtain its radiation resistance.

5M CO1
L2
c) Compute the directivity of a current element Idl.
$4 \mathrm{M} \quad \mathrm{CO} 1$

OR

2. a) Define and explain the parameters of an antenna.

4M CO1
L1
b) Compute the effective area of a pyramidal horn antenna with an example.

5M CO1
L2
c) Explain the field regions for antenna measurements, with a neat diagram.

5M CO1
L2

UNIT-II

3. a) Explain the significance of antenna array factor. Derive an expression for antenna array factor.
b) Distinguish 1. BEA from EFA
c) Explain the structure of Yagi Uda array. Bring out its design details

4M CO2
L1
5 M CO2
L2
$5 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 2$

OR

4. a) Mathematically prove that the 3dB beam width of EFA is greater than that of 3 dB beam width of BSA.
b) Explain how the folded dipole geometry is fabricated from transmission lines, with diagrams.
c) Derive the Zin of folded dipole antenna

5M CO2
L2

UNIT-III

5. a) State and explain Babinet's principle for aperture antennas.
b) Explain offset feed reflector geometry with ćre a:at diagram. For a parabolic reflector of diameter 6 m , illumination ${ }_{\eta}^{\exists} \stackrel{n \epsilon}{=} 0.65$, the frequency of operation is 10 GHz , find its beam width, directivity and capture area.
$5 \mathrm{M} \mathrm{CO3}$
c) Define and explain 1.Shadowing 2. f/d ratio
$4 \mathrm{M} \quad \mathrm{CO} 3$

OR

6. a) Differentiate Primary radiator from secondary radiator

4 M CO
b) Explain the construction and principle of pyramidal horn antenna.

5M CO3
c) A pyramidal horn antenna having aperture dimensions of $a=5.2 \mathrm{~cm}$ and $\mathrm{b}=3.8 \mathrm{~cm}$ is used at a frequency of 10 GHz . Calculate its gain and half power beam widths.

UNIT-IV

7. a) Discuss the factors involved in the propagation radio waves.

4M CO4
b) Explain the advantages, limitations and applications of Ground waves.

5M CO4
c) Differentiate ground waves from Space waves.

5M CO4
OR
8. a) Derive the electric field intensity of ground waves along the surface of earth.
$10 \mathrm{M} \mathrm{CO4}$
b) Why the waves are to be vertically polarized in surface wave propagation? Justify your answer.

4M CO4

UNIT-V

9. a) Explain two-ray model of tropospheric wave propagation. Derive the electric field intensity at the receiving antenna.

7M CO4

 distance of 600 Km . Compute $f_{c v}, \varepsilon_{r}, \eta, \beta, V_{p}, V_{g}$ ar ${ }_{\imath d} \theta_{i}$.

$\widehat{\mathbf{O R}}$

10. a) Draw the ionospheric profile diagram of sky wave propagation and explain.

7M CO4
L2
b) Derive the characteristic equations of ionosphere and explain them.
$7 \mathrm{M} \mathrm{CO4}$
L3

