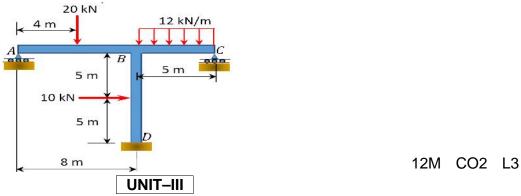
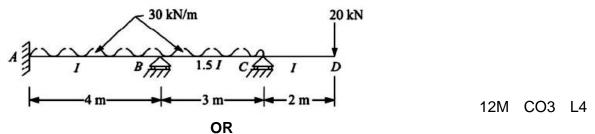
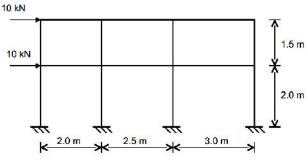
|    | Hall Ticket Number :                                      |            |              |             |                   |        |            |                | ]     |  |
|----|-----------------------------------------------------------|------------|--------------|-------------|-------------------|--------|------------|----------------|-------|--|
|    | Code: 20A15BT                                             |            |              |             |                   |        |            | R-20           |       |  |
|    | III B.Tech. I Sem                                         | ester Su   | pplem        | entary      | Exar              | ninat  | tions Ju   | ne 2024        |       |  |
|    | ŀ                                                         | dvanc      |              |             |                   | alysis | 5          |                |       |  |
|    |                                                           | (*         | Civil Eng    | gineerir    | ng)               |        |            | <b>T</b> ' 0 I |       |  |
|    | Max. Marks: 70                                            |            | ****         | ****        |                   |        |            | Time: 3 H      | lours |  |
|    | Note: 1. Question Paper con                               | sists of t | wo parts     | s (Part-A   | and I             | Part-E | 3)         |                |       |  |
|    | 2. In Part-A, each ques                                   |            | •            | -           |                   |        |            |                |       |  |
|    | 3. Answer <b>ALL</b> the que                              |            |              |             | -В                |        |            |                |       |  |
|    |                                                           |            | <u>PA</u>    | <u>RT-A</u> |                   |        |            |                |       |  |
|    |                                                           |            | ompulso      |             | -                 |        |            |                |       |  |
|    | nswer <b>all</b> the following sho                        |            | •            |             | (5X               |        | ,          |                | CO    |  |
| a) | Illustrate the free body diagra<br>internal forces.       | am of the  | cross s      | ection o    | f a two           | o hing | jed arch   | and mark the   | CO1   |  |
| )) | Give the difference between of                            |            | r factor a   | nd distri   | hution            | facto  | r in struc | tural analysis | CO2   |  |
|    | Give the difference between t                             | -          |              |             |                   |        |            | -              |       |  |
| ,  | under lateral loading.                                    |            |              | pontari     |                   |        |            | pontal marries | CO3   |  |
| d) | Identify the degree of kinema                             | tic indete | rminacy      | for the I   | oaded             | bean   | า          |                |       |  |
| ,  | , 0                                                       | 250 k      | 1020         | 120 k       |                   |        |            |                |       |  |
|    |                                                           | •          | В            |             |                   |        |            |                | CO4   |  |
|    | A                                                         |            | 000          |             |                   | C      |            |                | 001   |  |
|    |                                                           | 2 m 🗸      | 4 m          | 3 m 🚬 🗄     | im.               |        |            |                |       |  |
| i) | Find the shape factor of a tu                             | ibular se  | ction wit    | h outer     | diame             | ter ec | ual to ty  | vice the inner |       |  |
| -) | diameter.                                                 |            |              |             | alamo             |        |            |                | CO5   |  |
|    |                                                           |            |              | RT-B        | _                 | _      |            |                |       |  |
|    | Answer <i>five</i> questions h                            | y choosir  | ng one q     | uestion     | from e            | ach u  | nit (5 x 1 |                |       |  |
|    |                                                           |            |              | IT–I        |                   |        |            | Marks          | CO    |  |
|    | A three hinged parabolic ar                               | ch of spa  |              |             | 4 m c             | arries | a conce    | entrated       |       |  |
|    | load of 150 kN at 4 m fro                                 | •          |              |             |                   |        |            |                |       |  |
|    | horizontal thrust of the supp                             | orts.      |              |             |                   |        |            | 12M            | CO1   |  |
|    |                                                           |            | C            | DR          |                   |        |            |                |       |  |
|    | A two hinged parabolic arch                               | •          |              |             |                   |        |            |                |       |  |
|    | moment of inertia of rib and<br>arch and bending moment a |            | as show      | vn. Find    | the h             | orizon | ital thrus | t of the       |       |  |
|    | arch and bending moment a                                 | u D.       | 50 kN        |             |                   |        |            |                |       |  |
|    |                                                           | 50 kN      | C            |             |                   |        |            |                |       |  |
|    |                                                           | D          |              |             |                   |        |            |                |       |  |
|    |                                                           |            | 2.4 m        |             |                   |        |            |                |       |  |
|    | H                                                         |            | _ <u>+</u> _ |             | B                 | Н      |            |                |       |  |
|    | v. 🗮                                                      | 3 m — 🖬    | — 12 m —     |             | $\rightarrow V_s$ |        |            | 12M            | CO1   |  |


UNIT–II Using the slope-deflection method, determine the member end moments of the frame shown. 4.

0 kN/m C В 4 m 4 m 20 kN 4 m 6 m


OR

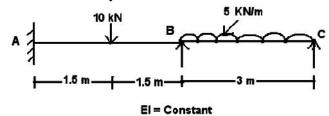
12M CO2 L3


5. Use the moment distribution method to compute the end moment of members of the frame shown and draw the bending moment. EI = constant.



6. Analyse the beam shown by Kani's method. Take constant flexural rigidity.

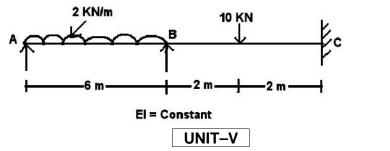



7. The frame is loaded by lateral load as shown. Analyse and plot the bending moment diagram using cantilever method.



12M CO3 L4

UNIT–IV


8. Analyse the continuous beam by matrix stiffness method

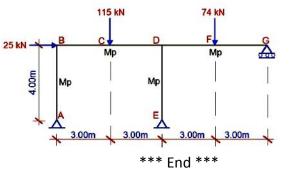


12M CO4 L4

OR

9. Analyse the continuous beam ABC by flexibility matrix method




12M CO4 L4

CO5 L3

4M

8M

- a) Give the significance of plastic moment in a section.
  b) Calculate the value of shape factor for a rectangular steel beam of cross section 500 mm x 1000 mm, as per plastic analysis of steel structures design concept.
  - OR
- 11. The frame is loaded with factored load as shown. Find the critical Mp value. Draw the collapse moment diagram.



12M CO5 L3

|    | Н          | lall Ticket Number :                                                                                                                          |                                                    |                                  |                                  |                                 |                                   |                           |                           |                         |                         |                         |                         | R-20        |      |    |
|----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------|---------------------------------|-----------------------------------|---------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------|------|----|
|    | Co         | de: 20A151T                                                                                                                                   | ononto                                             | r () .                           | مصاح                             |                                 | int or                            |                           |                           | in at                   |                         |                         |                         | ) /         |      |    |
|    |            | III B.Tech. I S                                                                                                                               | Basic F                                            |                                  | • •                              |                                 |                                   | •                         |                           |                         |                         | JUNE                    | e 202                   | 24          |      |    |
|    |            |                                                                                                                                               |                                                    |                                  |                                  |                                 | neei                              |                           |                           |                         | 9                       |                         |                         |             |      |    |
|    | Мс         | ax. Marks: 70                                                                                                                                 |                                                    |                                  |                                  | ****                            | ****                              |                           |                           |                         |                         |                         | Tin                     | ne: 3 Ho    | ours |    |
|    | Not        | e: 1. Question Paper co<br>2. In Part-A, each q<br>3. In Part-B, each q                                                                       | uestion ca                                         | rries                            | 28 m<br>14 m                     | arks                            | •                                 | nd <b>P</b> a             | art-B                     | )                       |                         |                         |                         |             |      |    |
|    |            |                                                                                                                                               | Answer                                             | any o                            | -                                |                                 |                                   | om t                      | he fo                     | llow                    | ing                     |                         |                         |             |      |    |
|    |            |                                                                                                                                               |                                                    |                                  | -                                |                                 |                                   |                           |                           |                         |                         |                         | N                       | Marks (     | 0    | BL |
| 1. | T<br>W     | Design a R.C. slab for<br>The slab is simply sup<br>vall, with corners held<br>nclusive of floor fini                                         | oported o<br>d down a                              | n all<br>nd ca                   | the f<br>arries                  | our e<br>a si                   | edges<br>uperii                   | s on<br>mpos              | 300n<br>sed l             | nm v<br>oad (           | vide<br>of 3.2          | masor<br>2 kN/r         | nry<br>n²,              |             |      |    |
|    | re         | einforcement details.                                                                                                                         |                                                    |                                  |                                  | _                               | _                                 |                           |                           |                         |                         |                         |                         | 28 C        | 03   | L4 |
| •  | -          |                                                                                                                                               |                                                    |                                  | ,                                | OF.                             |                                   |                           |                           |                         |                         |                         |                         |             |      |    |
| 2. | a<br>u     | Design the reinforcem<br>exial load of 1800kN of<br>Insupported length of<br>Jse M20 concrete and                                             | under sei<br>3.0m an                               | vice<br>d is b                   | deac<br>orace                    | d and<br>d aga                  | l live<br>ainst                   | load<br>side <sup>,</sup> | s. Tł<br>way              | ne co<br>in bo          | olumr<br>oth di         | n has<br>rectior        | an                      | 28 C        | :04  | L4 |
|    |            |                                                                                                                                               |                                                    |                                  | ]                                | PAR'                            | <u>Т-В</u>                        |                           |                           |                         |                         |                         |                         |             |      |    |
|    |            | Answer any                                                                                                                                    | y <i>three</i> qu                                  | iestio                           | ns fr                            | om t                            | he fo                             | llowi                     | ng (                      | 3 x 1                   | 4 = 4                   | 2 Mai                   | rks )                   |             |      |    |
| 2  | <b>c</b> ) | Evolution the principles                                                                                                                      | a of:                                              |                                  |                                  |                                 |                                   |                           |                           |                         |                         |                         |                         | Marks       | CO   | BL |
| 3. | a)         | Explain the principles<br>i) Working stress me                                                                                                |                                                    | _imit                            | state                            | met                             | hod                               |                           |                           |                         |                         |                         |                         | 7M          | 1    | L2 |
|    | b)         | Derive the stress blo<br>limit state method.                                                                                                  |                                                    |                                  |                                  |                                 |                                   | d red                     | ctang                     | gular                   | cros                    | s sect                  | ion in                  |             | 1    | L2 |
| 4. |            | A reinforced concre<br>subjected to ultimate<br>supports. The tensile<br>Design the shear sti<br>reinforcement at the<br>bars of Fe 250 grade | e design s<br>e reinforce<br>rrups nea<br>mid spar | sheai<br>emen<br>ar the<br>n. As | r forc<br>it at t<br>sup<br>sume | e of<br>he se<br>ports<br>e cor | 160<br>ectior<br>s. Als<br>icrete | kN a<br>n nea<br>o, de    | it the<br>ir sup<br>esign | criti<br>oport<br>the   | cal s<br>s is (<br>mini | ection<br>0.5 pe<br>mum | near<br>rcent.<br>shear | i<br>-<br>- | 2    |    |
| 5. |            | Design a R.C. slab<br>thickness of support<br>concrete at its top, th<br>on the slab may be t                                                 | for a roc<br>ing wall<br>e unit wei<br>aken as 3   | om ha<br>is 30<br>ght w<br>3kN/r | aving<br>0 mr<br>/hich<br>n². A  | insi<br>n. Tł<br>may<br>ssun    | de d<br>ne sla<br>be ta<br>ne the | ab ca<br>aken<br>e sla    | arries<br>as 19<br>b to 1 | s 100<br>9kN/i<br>the s | ) mn<br>m³. T           | n thick<br>he live      | k lime<br>e load        | ;<br> <br>  |      |    |
| 6. |            | at the ends. Use M30<br>A RC rectangular co<br>factored axial load of<br>short and long edges                                                 | olumn 3<br>f 1200 kN                               | m lor<br>I and                   | ng of<br>I mor                   | size<br>ment                    | 350 s 50                          | mm<br>kN-n                | x 4<br>n and              | 50 m<br>d 75            | kN-n                    | n para                  | llel to                 | )           | 3    | L4 |
|    |            | and Fe415 grade ste                                                                                                                           |                                                    |                                  |                                  |                                 |                                   |                           | -                         |                         |                         |                         |                         | 14M         | 4    |    |
| 7. | ,          | What are the main re                                                                                                                          | •                                                  |                                  |                                  |                                 |                                   | •                         |                           |                         |                         |                         |                         | 7M          | 5    |    |
|    | b)         | What are various type                                                                                                                         | es of footin                                       | ngs?                             |                                  | -                               | gn ste<br>d ***                   | -                         | or iso                    | lated                   | squa                    | are foc                 | oting.                  | 7M          | 5    | L2 |

|   | <b>~</b> . |                                                                                                                                                   | R-2              | 0        |        |  |
|---|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--------|--|
| ( | Co         | de: 20A55FT III B.Tech. I Semester Supplementary Examinations June 20                                                                             | )24              |          |        |  |
|   |            | Data Structures using Python                                                                                                                      | 'Z <del>'1</del> |          |        |  |
|   |            | (Common to CE &ME)                                                                                                                                |                  |          |        |  |
| 1 | Мс         |                                                                                                                                                   | ime: 3           | Ηοι      | Jrs    |  |
|   |            | *****                                                                                                                                             |                  |          |        |  |
| ٢ | Not        | e: 1. Question Paper consists of two parts (Part-A and Part-B)                                                                                    |                  |          |        |  |
|   |            | 2. In Part-A, each question carries <b>Two marks.</b>                                                                                             |                  |          |        |  |
|   |            | 3. Answer ALL the questions in Part-A and Part-B                                                                                                  |                  |          |        |  |
|   |            | <u>PART-A</u><br>(Computerry question)                                                                                                            |                  |          |        |  |
|   |            | (Compulsory question)                                                                                                                             | ~~~              |          |        |  |
|   |            | Answer <b>all</b> the following short answer questions $(5 \times 2 = 10 \text{ M})$                                                              | CO               |          |        |  |
|   |            | a) List python sequence types                                                                                                                     | 1                | L1       |        |  |
|   |            | <ul> <li>b) Define Queue data structure</li> <li>a) Write requiring function for Ethomosci corrigo</li> </ul>                                     |                  | L2<br>L1 |        |  |
|   |            | <ul> <li>c) Write recursive function for Fibonacci series</li> <li>d) Write the differences between binary tree and binary search tree</li> </ul> | 3<br>4           | L1       |        |  |
|   |            | <ul> <li>d) Write the differences between binary tree and binary search tree</li> <li>e) Give, applications for pattern matching</li> </ul>       | 4<br>5           | L1<br>L2 |        |  |
|   |            | PART-B                                                                                                                                            | 5                | LZ       |        |  |
|   | Δ          | nswer <i>five</i> questions by choosing one question from each unit ( 5 x 12 =                                                                    | 60 Ma            | rks '    |        |  |
|   |            |                                                                                                                                                   |                  | rks      |        |  |
|   |            | UNIT-I                                                                                                                                            | ivia             | NO       | 00     |  |
|   |            | Explain static and dynamic arrays in python                                                                                                       | 1                | 2M       | 1      |  |
|   |            | OR                                                                                                                                                |                  |          |        |  |
|   |            | What is a Data structures? Explain Linear data structures and Non Linear                                                                          | ı <b>r</b>       |          |        |  |
|   |            | data types with example                                                                                                                           | 1:               | 2M       | 1      |  |
| _ | _ \        |                                                                                                                                                   |                  | ~~ 4     | ~      |  |
|   | a)<br>D)   | Write an algorithm to convert infix to post fix expression using stack<br>Use stack to Convert the infix to postfix for a-(b+c)*(d/e)             |                  | 6M<br>6M | 2<br>2 |  |
| Ľ | )          | Ose stack to convert the milk to positik for a-(b+c) (d/e)                                                                                        |                  |          | Z      |  |
| 2 | a)         | What is a linked list? Explain Single linked list and various operations on it.                                                                   | i                | 6M       | 2      |  |
|   |            | Write a program to implement insert front and delete end operations.                                                                              |                  | 6M       | 2      |  |
| ~ | -)         |                                                                                                                                                   |                  | 5111     | -      |  |
|   |            | Explain the concept of towers of Hanoi                                                                                                            | 1                | 2M       | 3      |  |
|   |            | OR                                                                                                                                                |                  |          |        |  |
|   |            | Explain Merge sort? Sort the following elements using merge sort. Below i                                                                         |                  |          |        |  |
|   |            | example for Your reference 45, 23, 20, 50,70, 24, 33, 43, 47.                                                                                     | 1:               | 2M       | 3      |  |
| _ | _ \        |                                                                                                                                                   |                  | ~~ 4     |        |  |
|   |            | What is Binary search? Write a Program to implement it?                                                                                           |                  | 6M       | 4      |  |
| U | ))         | What are the applications of binary search?<br>OR                                                                                                 |                  | 6M       | 4      |  |
|   |            | Explain three standard ways of traversing a binary tree T with a recursive algorithm.                                                             | 1                | 2M       | 4      |  |
|   |            | UNIT-V                                                                                                                                            | 1.               | -111     | +      |  |
|   |            | Which pattern matching algorithm avoids the repeated comparison of characters                                                                     | ?                |          |        |  |
|   |            | Discuss with suitable example.                                                                                                                    |                  | 2M       | 5      |  |
|   |            | OR                                                                                                                                                |                  |          |        |  |
|   |            | Which wettern westelling algorithm second the characters from vight to left? Evaluation                                                           | n                |          |        |  |
|   |            | Which pattern matching algorithm scans the characters from right to left? Explai<br>it with suitable example.                                     |                  | 2M       | 5      |  |

|                                                                                                             |      |                                             |        |       |        |            | 1     |            | 1      | 1       |         | 1        | 7        |           |        |      |
|-------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|--------|-------|--------|------------|-------|------------|--------|---------|---------|----------|----------|-----------|--------|------|
|                                                                                                             | Ha   | all Ticket Number :                         |        |       |        |            |       |            |        |         |         |          |          |           |        | ]    |
|                                                                                                             | Co   | de: 20A152T                                 |        |       |        |            |       |            |        |         |         |          |          | R-2       | 0      |      |
|                                                                                                             |      | III B.Tech. I                               | Sem    | neste | er Su  | Iqqu       | eme   | entc       | ary E  | ixan    | nina    | tion     | s June   | e 2024    |        |      |
|                                                                                                             |      |                                             |        | En    | viro   |            |       |            | -      |         | ing     |          |          |           |        |      |
|                                                                                                             | Mo   | x. Marks: 70                                |        |       | (      | Civi       | l Eng | ginee      | ering  | 1)      |         |          |          | Time: 3   | Hours  |      |
|                                                                                                             | 1110 |                                             |        |       |        |            | ****  | ****       | k      |         |         |          |          | 11110.0   | 110013 |      |
|                                                                                                             | Not  | e: 1. Question Pape                         |        |       |        | •          |       | •          |        | and F   | art-    | B)       |          |           |        |      |
|                                                                                                             |      | 2. In Part-A, each                          | •      |       |        |            |       |            |        | ,       |         |          |          |           |        |      |
|                                                                                                             |      | 3. Answer <b>ALL</b> the                    | e que  | 2500  | 15 111 | Pdft       |       | RT-A       | dr l-D | )       |         |          |          |           |        |      |
|                                                                                                             |      |                                             |        |       | (0     | Comp       |       | ry qu      | estio  | n)      |         |          |          |           |        |      |
| 1. /                                                                                                        | Ansv | wer all the following s                     | short  | ans   | ver q  | uest       | ions  | (5         | X 2    | = 10    | M)      |          |          |           | СО     | BL   |
| a)                                                                                                          | Enl  | ist the unique charac                       | cteris | tics  | of wa  | ter v      | vhich | mak        | e it a | a unio  | que r   | esou     | irce.    |           | CO1    | L1   |
| b)                                                                                                          |      | ntify at least three i                      | •      |       | wate   | er qu      | ality | para       | mete   | ers a   | nd e    | xplai    | in the   | reason of |        |      |
|                                                                                                             |      | asuring such parame                         |        |       |        |            |       |            |        |         |         |          |          |           | CO2    | L2   |
| c)                                                                                                          |      | umerate the objective                       |        |       |        |            |       |            |        |         |         |          |          |           | CO3    | L2   |
| d)                                                                                                          |      | en rainy season is c<br>verage system would |        |       |        |            | onthe | s, like    | e that | t in Ir | idia,   | the p    | oreferre | ed        | CO4    | L2   |
| e)                                                                                                          |      | laboratory provides                         |        |       |        |            | olids | ana        | alysis | for     | а       | wast     | ewater   | sample:   |        |      |
| ,                                                                                                           |      | =225 mg/L, TDS = 4                          |        |       |        | •          |       |            | •      |         |         |          |          | •         |        |      |
|                                                                                                             | con  | centration of this sa                       | mple   | ?     |        |            |       |            |        |         |         |          |          |           | CO5    | L3   |
| <u>PART-B</u><br>Answer <i>five</i> questions by choosing one question from each unit ( 5 x 12 = 60 Marks ) |      |                                             |        |       |        |            |       |            |        |         |         |          |          |           |        |      |
|                                                                                                             |      | Answei <i>iive</i> questi                   |        | у сп  | UUSII  | ig oi      | ie qu | iesiic     |        | in ea   |         | II III ( | 5 X 12   | = oo mark | •      | BL   |
|                                                                                                             |      |                                             |        |       |        |            | UN    | T_I        |        |         |         |          |          | Mark      | , 00   | DL   |
| 2.                                                                                                          | a)   | According to your                           | unde   | rstar | nding  | and        |       |            | nce,   | enlis   | t im    | oorta    | nt fact  | ors       |        |      |
|                                                                                                             | ,    | affecting per capita                        |        |       |        |            |       |            |        |         | •       |          |          |           | 1 CO1  | L2   |
|                                                                                                             | b)   | Show how 'losses a                          | and v  | vaste | es' ar | e ac       | cour  | nted f     | or in  | the     | quar    | ntity e  | estimat  |           |        |      |
|                                                                                                             |      | of water for a city.                        |        |       |        |            | •     | -          |        |         |         |          |          | 6N        | 1 CO1  | L2   |
| C                                                                                                           |      | The decompiel (Te                           |        |       |        |            |       | R<br>rda f | ~ ~ ~  | oit.    | <b></b> | ~i. //   | on hal   | <b></b>   |        |      |
| 3.                                                                                                          |      | The decennial (Te Estimate the 2030 g       | •      | ,     |        |            |       |            |        | •       |         | •        |          | ow.       |        |      |
|                                                                                                             |      | ·                                           | •      |       | Year   |            |       | Jatio      | · · ·  |         |         |          |          |           |        |      |
|                                                                                                             |      |                                             |        |       | 1990   |            | 20    | ,000       |        |         |         |          |          |           |        |      |
|                                                                                                             |      |                                             |        |       | 2000   |            | 60    | ,000       |        |         |         |          |          |           |        |      |
|                                                                                                             |      |                                             |        |       | 2010   |            | 1,00  | 0,000      | )      |         |         |          |          |           |        |      |
|                                                                                                             |      |                                             |        |       | 2020   |            | 1,4   | 0,00       |        |         |         |          |          | 12N       | 1 CO1  | L3   |
|                                                                                                             |      |                                             |        |       |        |            |       |            |        |         |         |          |          |           |        |      |
|                                                                                                             |      |                                             |        |       | -      |            | UNI   |            |        |         |         |          |          |           |        |      |
| 4.                                                                                                          | a)   |                                             | ations | s of  | impu   | rities     | bas   | ed o       | on the | eir na  | ature   | e and    | d physi  |           |        | 0 10 |
|                                                                                                             | b)   | state.<br>Define intake. What               | it are | the   | vario  | )<br>IIC I | acto  | rs wi      | nich   | auve    | rn th   |          |          |           | 1 CO2  | LZ   |
|                                                                                                             | 5)   | site for locating an i                      |        |       | vant   | 503 1      | 2010  | 13 11      | 1011   | 9000    | iii u   | 10 30    |          |           | 1 CO2  | 2 L2 |
|                                                                                                             |      | č                                           |        |       |        |            | 0     | R          |        |         |         |          |          |           |        |      |

| 5.  | a) | State the factors you would take into consideration and the procedure you would follow in designing a distribution system for the water supply of a city.                                                                                                                                                                                                                                                                                                                                                                            | 6M  | CO2 | L2 |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|     | b) | Define the meaning of the term <i>pathogen</i> and give the names of pathogen groups. What determines the kinds and concentrations of pathogens in water? Define the meaning of fecal-oral route in the transmission of                                                                                                                                                                                                                                                                                                              |     |     |    |
|     |    | diseases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6M  | CO2 | L2 |
| 6.  | a) | Identify the zones in ideal sedimentation tank and depict in a simple diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6M  | CO3 | L2 |
|     | b) | Briefly describe mechanical straining and adsorption or filtration mechanisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6M  | CO3 | L2 |
|     |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |    |
| 7.  | a) | Identify the four factors that bound the selection of a primary disinfectant.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6M  | CO3 | L2 |
|     | b) | Explain how colloidal particles become negatively charged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6M  | CO3 | L2 |
|     |    | UNIT–IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |    |
| 8.  | a) | Explain the need for estimating the velocity of wastewater in a pipe that is                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |    |
|     |    | flowing less than full or half full.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6M  | CO4 | L2 |
|     | b) | It was decided to introduce an underground drainage (UGD) system for an industrial town. With the aid of suitable sketch, explain any two sewer appurtenances required for the efficient running of UGD system.                                                                                                                                                                                                                                                                                                                      | 6M  | CO4 | L2 |
|     |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |    |
| 9.  | a) | Two cities A and B are planned for wastewater carriage system. City A intended for conveyance of foul sewage in one sewer and rainwater in another sewer. Whereas city B intended for conveyance of foul sewage and rainwater in sewer. Name the water carriage system. Describe in brief various advantages and disadvantages.                                                                                                                                                                                                      | 6M  | CO4 | L3 |
|     | b) | Explain how you will test the newly laid sewer lines before bringing them                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |    |
|     |    | into commission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6M  | CO4 | L2 |
|     |    | UNIT–V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |    |
| 10. | a) | Why are coagulants used in sewage treatment? Under what conditions chemical aided sedimentation is preferred to plain sedimentation.                                                                                                                                                                                                                                                                                                                                                                                                 | 6M  | CO5 | L2 |
|     | b) | Investigate the specific mechanisms by which ammonia nitrogen, total nitrogen, and phosphorus are treated or recovered at your local municipal wastewater treatment plant. Are the processes chemical or biochemical (or a combination)? Discuss your answer.                                                                                                                                                                                                                                                                        | 6M  | CO5 | L2 |
|     |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OW  | 000 | 6  |
| 11. |    | In the following sentences, circle the correct term in boldface. If the solids retention time (SRT) is low (for example, 4 days), which conditions exist?<br>(a) The F/M ratio is low/high. (b) The power requirements for aeration will be less/greater. (c) The microorganisms will be starved/saturated with food.<br>(d) The mean cell retention time is low/high. (e) The sludge age is low/high.<br>(f) The sludge wastage rate may have been recently increased/ decreased.<br>(g) The MLSS may have been increased/decreased | 12M | CO5 | L3 |

(g) The MLSS may have been increased/decreased

\*\*\* End \*\*\*

| L | Hal      | Ticket Number :                                                                                          | <b>.</b>   |        |         |
|---|----------|----------------------------------------------------------------------------------------------------------|------------|--------|---------|
| C | Cod      | e: 20A15AT                                                                                               | R-20       |        |         |
|   |          | III B.Tech. I Semester Supplementary Examinations June                                                   | 2024       |        |         |
|   |          | Sustainable Construction Methods                                                                         |            |        |         |
|   | 100      | (Civil Engineering)                                                                                      | Tipe of 21 |        |         |
| Γ | Max      | Marks: 70 ********                                                                                       | Time: 3 ⊦  | IOUIS  |         |
| N | Note     | 1. Question Paper consists of two parts (Part-A and Part-B)                                              |            |        |         |
|   |          | 2. In Part-A, each question carries <b>Two marks</b> .                                                   |            |        |         |
|   |          | 3. Answer ALL the questions in Part-A and Part-B<br>PART-A                                               |            |        |         |
|   |          | ( Compulsory question )                                                                                  |            |        |         |
|   | 1.7      | Answer <b>all</b> the following short answer questions $(5 \times 2 = 10M)$                              | CO         | BL     |         |
|   | a)       | What is meant by green building?                                                                         | 1          | L1     |         |
|   | b)       | Give briefly on launching of green building rating systems.                                              | 2          | L1     |         |
|   | c)       | What is system efficiency in green buildings?                                                            | 3          | L1     |         |
|   | d)       | Mention the design philosophy of green buildings.                                                        | 4          | L2     |         |
|   | e)       |                                                                                                          | 5          | L1     |         |
|   |          | $\frac{PART-B}{F}$                                                                                       | (A Manka)  |        |         |
|   |          | Answer <i>five</i> questions by choosing one question from each unit ( $5 \times 12 =$                   | Marks      |        | В       |
|   |          | UNIT-I                                                                                                   | manto      |        | _       |
|   | a)       | Explain in your words why the green buildings are needed in mode                                         | rn         |        |         |
|   | ,        | construction context.                                                                                    | 6M         | 1      | Ľ       |
|   | b)       | Explain in detail about the benefits of green building.                                                  | 6M         | 1      | Ľ       |
|   |          | OR                                                                                                       |            |        |         |
| • |          | Explain in detail about any six green building materials used in construction industry.                  | on<br>12M  | 1      | L       |
|   |          | UNIT-II                                                                                                  | 12111      | •      |         |
|   |          | Discuss the green building opportunities and their benefits in India.                                    | 12M        | 2      | Ľ       |
|   |          | OR                                                                                                       |            |        |         |
|   |          | Describe the procedure involved in the typical energy saving approach                                    |            | _      |         |
|   |          | buildings and its applications.                                                                          | 12M        | 2      | Ľ       |
|   |          | UNIT-III                                                                                                 | 4014       | 0      |         |
|   |          | Explain the reduction in energy demand in green buildings.<br>OR                                         | 12M        | 3      | Ľ       |
|   |          | Discuss the use of renewable energy sources.                                                             | 12M        | 3      | L       |
|   |          |                                                                                                          | 12101      | 0      |         |
|   |          | Explain the design philosophy of a HVAC system and write about energy                                    | av         |        |         |
|   |          | modelling.                                                                                               | 12M        | 4      | Ľ       |
|   |          | OR                                                                                                       |            |        |         |
| • |          | Describe the factors governing the selection of cooling towers and a handling units.                     | air<br>12M | 4      | Ľ       |
|   |          | UNIT-V                                                                                                   | 12111      | 4      | L       |
|   | a)       | Practically, how we can achieve the reduction of waste during construction?                              | 6M         | 5      | L       |
|   | с)<br>b) | Describe the significance of air conditioning and indore air quality in gree                             |            | Ũ      | `       |
|   | ,        | buildings.                                                                                               | 6M         | 5      | Ľ       |
|   |          | OR                                                                                                       |            |        |         |
|   |          |                                                                                                          |            |        |         |
|   | a)<br>b) | List the reasons for poor IAQ<br>Explain briefly about the measures to obtain the acceptable IAQ levels. | 6M<br>6M   | 5<br>5 | L'<br>L |

| Hal        | I Ticket Number :                                                                                                                 |            |       |    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-------|----|
| Code       | ≥: 20A153T                                                                                                                        | R-20       | )     |    |
| Cour       | III B.Tech. I Semester Supplementary Examinations June                                                                            | 2024       |       |    |
|            | Water Resource Engineering                                                                                                        |            |       |    |
| Max        | (Civil Engineering)<br>Marks: 70                                                                                                  | Time: 3 I  | Hours |    |
| Max.       | *******                                                                                                                           | 11110.01   | 10013 |    |
|            | <ol> <li>Question Paper consists of two parts (Part-A and Part-B)</li> <li>In Part-A, each question carries Two marks.</li> </ol> |            |       |    |
|            | 3. Answer ALL the questions in Part-A and Part-B                                                                                  |            |       |    |
|            | PART-A                                                                                                                            |            |       |    |
|            | (Compulsory question)                                                                                                             |            |       |    |
|            | r <b>all</b> the following short answer questions $(5 \times 2 = 10 \text{ M})$                                                   | )          | CO    | BL |
| <i>,</i> . | ain about any four forms of precipitation                                                                                         |            | 1     | L1 |
|            | e Darcy's law along with expression.                                                                                              |            | 2     | L1 |
| <i>,</i> . | ain how the consumptive use is estimated by Blaney- Cridle                                                                        | method?    | 3     | L2 |
|            | t is Ogee spillway? Where is it preferred?                                                                                        |            | 4     | L2 |
| e) What    | t is Type-III aqueduct and when it is preferred to construct?                                                                     |            | 5     | L2 |
| ٨٥         | <u>PART-B</u>                                                                                                                     | ) - 60 Mar | ke)   |    |
| Alls       | swer <i>five</i> questions by choosing one question from each unit ( 5 x 12                                                       | Marks      | co    | BL |
|            | UNIT-I                                                                                                                            | marite     | 00    |    |
| 2. a)      | Describe the principle of working of a float type recording                                                                       | <b>j</b>   |       |    |
|            | raingauge with a neat sketch. Discuss its advantages and                                                                          | ł          |       |    |
|            | disadvantages                                                                                                                     | 7M         | CO1   | L2 |
| b)         | Explain the factors affecting infiltration in detail.                                                                             | 5M         | CO1   | L2 |
|            | OR                                                                                                                                |            |       |    |
| 3. a)      | Explain rainfall mass curve and hyetograph with the help                                                                          | )          |       |    |
|            | of neat sketches. How a rainfall hyetograph can be derived                                                                        | k          |       |    |
|            | from a given rainfall mass curve?                                                                                                 | 6M         | CO1   | L3 |
| b)         | Explain the scope of hydrology and its application in water                                                                       |            |       |    |
|            | resources development programmes                                                                                                  | 6M         | CO1   | L2 |
| 4 ->>      |                                                                                                                                   | _          |       |    |
| 4. a)      | Explain the derivation of Unit Hydrograph by mentioning its                                                                       |            | 000   |    |
| <b>b</b> ) | assumptions                                                                                                                       |            | CO2   | L3 |
| D)         | What is S- Curve Technique? The ordinates of 4h U.H. of<br>a basin of area 300 km <sup>2</sup> measured at 1 h intervals are      |            |       |    |
|            | 6, 36, 66, 91,106, 93, 79, 68, 58, 49, 41, 34, 27, 17, 13, 9, 6, 3                                                                |            |       |    |
|            | and 1.5 cumecs respectively. Obtain the ordinates of a                                                                            |            |       |    |
|            | 3 h U.H. for the basin using the S -curve technique                                                                               |            | CO2   | L3 |
|            | OR                                                                                                                                |            |       |    |
|            |                                                                                                                                   |            |       |    |

|     |            | Co                                                                                                                                                                                                                        | <b>de: 20</b> A | A153T |     |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-----|
| 5.  | ,          | Differentiate between confined and unconfined aquifers<br>with a neat sketch.<br>For a data of maximum recorded flood of a river, the mean<br>and standard deviation are 4500m <sup>3</sup> /s and 1700m <sup>3</sup> /s, | 6M              | CO2   | L2  |
|     |            | spectively. Using Gumbel's extreme value distribution,<br>stimate the return period of a design flood of 9500 m <sup>3</sup> /s.<br>mssume an infinite sample size.<br>$m_n^2 = 0.57$ ,<br>722 and n = 1.28255            | 6M              | CO2   | L4  |
| 6.  | a)         | UNIT-III<br>Appraise various methods in which the irrigation water can<br>be applied to the fields with neat diagrams.                                                                                                    | 8M              | CO3   | L3  |
|     | b)         | Derive the relationship between Duty, Delta and Base period.                                                                                                                                                              | 4M              | CO3   | L3  |
|     |            | OR                                                                                                                                                                                                                        |                 |       |     |
| 7.  | a)         | Find the channel section and discharge that can be allowed to flow in it, if B/D=5.7, bed slope=1/5000 and N=0.0225. Use Kennedy's theory                                                                                 | 6M              | CO3   | L4  |
|     | b)         | reservoir yield.                                                                                                                                                                                                          | 6M              | CO3   | L3  |
| •   | 、          |                                                                                                                                                                                                                           |                 |       |     |
| 8.  |            | Explain in detail about the safe design criteria for earthen dams.                                                                                                                                                        | 6M              | CO4   | L2  |
|     | b)         | Describe any six types of spill ways, advantages and disadvantages with neat figures <b>OR</b>                                                                                                                            | 6M              | CO4   | L3  |
| 0   | -)         | -                                                                                                                                                                                                                         |                 |       |     |
| 9.  | a)         | Explain Khosla's method of independent of variables. How<br>do you apply corrections for (i) thickness of floor,<br>(ii) indication of floor and (iii) interference of piles?                                             | 7M              | CO4   | L3  |
|     | b)         | What is the necessity of temperature control in gravity dam? How is temperature controlled                                                                                                                                | 5M              | CO4   | L3  |
| 10. | a)         | <b>UNIT-V</b><br>Explain the cross-drainage structure to be adopted based<br>on H.F.L of drain and F.S.L of the canal?                                                                                                    | 6M              | CO5   | 13  |
|     | <b>b</b> ) |                                                                                                                                                                                                                           |                 |       |     |
|     | U)         | Describe about the design principles of Straight Glacis fall<br>OR                                                                                                                                                        |                 | CO5   | LJ  |
| 11  | <b>J</b> ) | Explain how to select site for cross drainage works                                                                                                                                                                       | 514             | 005   | 1.0 |
| 11. | a)<br>b)   | Describe the design principles of Syphon aqueduct                                                                                                                                                                         |                 | CO5   |     |
|     | U)         | *** End ***                                                                                                                                                                                                               | 7 111           | CO5   | L3  |