
 b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M 														oer :	ket Numb	all Tic	На	
III B.Tech. I Semester Supplementary Examinations June 2024 Introduction to Communication Systems (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Ha Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the question is Part-A and Part-B PART-A (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) a) Define modulation. Why modulation is required. b) State the noise and its effects in communication system. c) Co2 c) Draw the phasor diagram of narrow band FM. c) Co3 d) List advantages of digital communications. c) Co4 e) State different modulation schemes. c) Co5 PART-B Answer <i>fire</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10 ⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? c) CoR a) Elucidate meaning and the need of modulation b) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter		R-20]_				1				A45FT	10.3(Cor	
(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Ha Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) co a) Define modulation. Why modulation is required. C01 b) State the noise and its effects in communication system. C02 c) Draw the phasor diagram of narrow band FM. C03 d) List advantages of digital communications. C04 e) State different modulation schemes. C05 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10 ⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M OR Illuidate meaning and the need of modulation 6M b) Explain the process of generation of VSB waves 6M 6M)24	e 20	ons Ji	natic	amin	/ Exc	ntary	eme	ple	r Su	este	em	h.15		1 C . 2(
Max. Marks: 70 Time: 3 He Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions ($5 \times 2 = 10M$) co a) Define modulation. Why modulation is required. CO1 co b) State the noise and its effects in communication system. CO2 c) Draw the phasor diagram of narrow band FM. CO3 d) List advantages of digital communications. CO4 e) State different modulation schemes. CO5 PART-B Answer five questions by choosing one question from each unit ($5 \ge 12 = 60$ Marks) Marks UNIT-I a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by V = $50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t.$ State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M OR INIT-I a) Explain the square law detection of AM signals. 6M b) An amplitude meaning and the need of modulation 6M 6M 0R c)				tems	Syst	ion	icat	nuni	omi	οC	on t	uctio	rod					
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) a) Define modulation. Why modulation is required. b) State the noise and its effects in communication system. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Draw the phasor diagram of narrow band FM. c) Marks (Compulsion) (DIT-I) a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10 ⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V?	21 Irs	ime: 3 Hr	ті	g)	əring	ginee	s Eng	onic	lect	nd E	al a	ctric	(Ele		rks∙70		Ma	
 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) compulsory question) a) Define modulation. Why modulation is required. Co1 b) State the noise and its effects in communication system. Co2 c) Draw the phasor diagram of narrow band FM. Co3 d) List advantages of digital communications. Co4 e) State different modulation schemes. Co5 <u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks UNIT-I a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M a) Elucidate meaning and the need of modulation 6M b) Explain the square law detection of AM signals. 6M b) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 	5013	110. 0 HC						****	****	5					11K3.70	A. 141C	1110.	
3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) co a) Define modulation. Why modulation is required. CO1 b) State the noise and its effects in communication system. CO2 c) Draw the phasor diagram of narrow band FM. CO3 d) List advantages of digital communications. CO4 e) State different modulation schemes. CO5 <u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks <u>UNIT-I</u> a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10 ⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M a) Elucidate meaning and the need of modulation 6M b) Explain the square law detection of AM signals. 6M b) Explain the process of generation of VSB waves 6M b) Explain how a SSBSC signal is generated using a filter				1	rt-B)	d Par				•				•			Not	
PART-A (Compulsory question)1. Answer all the following short answer questions $(5 \times 2 = 10M)$ COa) Define modulation. Why modulation is required.CO1b) State the noise and its effects in communication system.CO2c) Draw the phasor diagram of narrow band FM.CO3d) List advantages of digital communications.CO4e) State different modulation schemes.CO5PART-B Answer fire questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)MarksMarksa) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum.6Mb) An amplitude modulated voltage is given by $V = 50$ ($1 + 0.2 \cos 100 t + 0.001 \cos 3500t$) cos $10^6 t$. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V?6Ma) Elucidate meaning and the need of modulation6Mb) Explain the square law detection of AM signals.6Mb) Explain the process of generation of VSB waves6Mc) DescriptionCO1c) DescriptionCO2c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3c) DescriptionCO4c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3c) DescriptionCO3 </td <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>													•		-			
 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) column 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) a) Define modulation. Why modulation is required. Colim 1. Colim 2. C										urt	5	5001	que			5.7		
a)Define modulation. Why modulation is required.CO1b)State the noise and its effects in communication system.CO2c)Draw the phasor diagram of narrow band FM.CO3d)List advantages of digital communications.CO4e)State different modulation schemes.CO5PART-BAnswer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)MarksMarksINIT-Ia)What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum.6Mb)An amplitude modulated voltage is given by $V = 50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t. Stateall frequency components present in the voltage, and findmodulation index for each modulating voltage term. What isthe effective modulation index of V?6MORa)Elucidate meaning and the need of modulation6Mb)Explain the square law detection of AM signals.6Mb)Explain the process of generation of VSB waves6M$			A \	0 4		•		-		-	•		•	C . II .				
b) State the noise and its effects in communication system. CO2 c) Draw the phasor diagram of narrow band FM. CO3 d) List advantages of digital communications. CO4 e) State different modulation schemes. CO5 $\frac{PART-B}{Answer five \text{ questions by choosing one question from each unit (5 x 12 = 60 Marks)}}$ Marks a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by $V = 50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t$. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M explain the square law detection of AM signals. 6M b) Explain the process of generation of VSB waves 6M b) Explain how a SSBSC signal is generated using a filter	BL		Л)	Z = 1		`												
c) Draw the phasor diagram of narrow band FM. CO3 d) List advantages of digital communications. CO4 e) State different modulation schemes. CO5 PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks UNIT-I a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by $V = 50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t$. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M 0R a) Elucidate meaning and the need of modulation 6M b) Explain the square law detection of AM signals. 6M b) Explain the process of generation of VSB waves 6M b) Explain how a SSBSC signal is generated using a filter	L1			tom			•										'	
d) List advantages of digital communications. CO4 e) State different modulation schemes. CO5 PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks UNIT-I a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by $V = 50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t$. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M 0R a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. 6M UNIT-II a) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter	L1			stem.	Sys												,	
 c) Each different modulation schemes. c) State different modulation schemes. c) PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks UNIT-I a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. b) Explain the process of generation of VSB waves c) Explain how a SSBSC signal is generated using a filter 	L1					1.						-			-			
PART-B Marks in the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by $V = 50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t$. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M a) Elucidate meaning and the need of modulation 6M b) Explain the square law detection of AM signals. 6M b) Explain the process of generation of VSB waves 6M	L1						15.					-		-				
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ Marks) Marks UNIT-I a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by $V = 50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t$. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M a) Elucidate meaning and the need of modulation 6M b) Explain the square law detection of AM signals. 6M b) Explain the process of generation of VSB waves 6M b) Explain how a SSBSC signal is generated using a filter	L1	005									n so	llauc	ισαι		e dinere	Siai	e)	
UNIT-I a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. 6M b) An amplitude modulated voltage is given by $V = 50 (1 + 0.2 \cos 100 t + 0.001 \cos 3500t) \cos 10^6 t$. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M a) Elucidate meaning and the need of modulation 6M b) Explain the square law detection of AM signals. 6M b) Explain the process of generation of VSB waves 6M		Marks)	= 60	t (5 x ⁻	unit	each	from				osin	v chc	ns h	nestio	ver <i>five</i> aı	Ans		
UNIT-Ia) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum.6Mb) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10 ⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V?6MOR0Ra) Elucidate meaning and the need of modulation6Mb) Explain the square law detection of AM signals.6MUNIT-IIa) Explain the process of generation of VSB waves6M		ivitui K5)	- 00 .	U (U A .	unit	cucii	ii oini		que	, U II	USIII	y cho	ns o	ucsin	ver jære qu	11115		
 a) What is the principle of Amplitude modulation? Derive expression for the AM wave and draw its spectrum. b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. b) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 	СО	Marks						Ŧ ,										
 expression for the AM wave and draw its spectrum. b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M OR a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. b) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 			i vo	n) [otior	dula			-	Δ.	of	ainte	ring		ot io th	\ \ /h	2)	
 b) An amplitude modulated voltage is given by V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. b) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 	CO1	6M	ive						-			-					a)	
 V = 50 (1 + 0.2 cos 100 t + 0.001 cos 3500t) cos 10⁶ t. State all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M OR a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. a) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 	001				uun	-										-	h)	
 all frequency components present in the voltage, and find modulation index for each modulating voltage term. What is the effective modulation index of V? 6M OR a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. a) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 			ato	1∩ ⁶ t	ne 1	•		•							•		D)	
 modulation index for each modulating voltage term. What is the effective modulation index of V? OR a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. UNIT-II a) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 						,									``			
the effective modulation index of V? 6M OR OR a) Elucidate meaning and the need of modulation 6M b) Explain the square law detection of AM signals. 6M UNIT-II 6M a) Explain the process of generation of VSB waves 6M b) Explain how a SSBSC signal is generated using a filter 6M					•					•			•	•	•			
 a) Elucidate meaning and the need of modulation b) Explain the square law detection of AM signals. CUNIT-II a) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 	CO1	6M (0		0										
 b) Explain the square law detection of AM signals. 6M UNIT-II a) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 									OF									
 b) Explain the square law detection of AM signals. 6M UNIT-II a) Explain the process of generation of VSB waves b) Explain how a SSBSC signal is generated using a filter 	CO1	6M (า	ation	dula	f mo	ed c	ne	the	and	ing	near	cidate m	Elu	a)	
UNIT-IIa) Explain the process of generation of VSB waves6Mb) Explain how a SSBSC signal is generated using a filter					5.	Inals	1 sig	f AN	on c	ecti	det	law	are	squ	lain the	Exp	b)	
b) Explain how a SSBSC signal is generated using a filter														•		•	,	
	CO2	6M (es	wave	SB v	of V	ion	era	gen	s of	ces	pro	lain the	Exp	a)	
method. 6M			lter	ng a	usir	ted	nera	ger	l is	gna	C s	BS	SS	w a	lain ho	Exp	b)	
	CO2	6M (hod.	met		
OR									OF									
a) Draw the ring modulator and explain the generation of DSB-			SB-	on of	atio	ener	ie ge	in th	xpla	າd e	or ar	ulato	nodu	ng n	w the rii	Dra	a)	
SC waves. 6M	CO2	6M (waves.	SC		
b) Compare different amplitude modulation techniques. 6M	CO2	6M (es.	ique	echn	on te	ulatio	nod	de r	litu	amp	ent	liffer	npare d	Cor	b)	

Code: 2	0A45ET
---------	--------

	UNIT-III	ie: 20A4	45ET	
6. a)	Discuss the process of Detection of FM Waves by Phase locked loop.	6M	CO3	L3
b)	Consider an FM signal $s(t)=10cos(2 \ 10^6t + 8sin4 \ 10^3t)$. Determine i) Modulation index ii) frequency deviation			
	iii) power iv) bandwidth	6M	CO3	L3
	OR			
7. a)	Derive the expression for single tone frequency modulated			
	signal		CO3	
b)	Compare AM & FM in detail.	6M	CO3	L2
•				
8.	Explain the delta modulation system with suitable diagrams?	12M	CO4	L2
	OR			
9. a)	Explain with a neat block diagram of PCM system.	6M	CO4	L2
b)		6M	CO4	L2
	UNIT-V			
	Explain the generation and detection of PSK.	6M	CO5	L2
b)	, , , , , ,			
	system.	6IVI	CO5	L2
	OR			
11. a)	Draw the block diagram of DPSK modulator and explain how synchronization problem is avoided for its detection.	6M	CO5	
b)		OIVI	CO5	LZ
D)	Describe the generation and coherent detection of Amplitude Shift Keying (ASK) signal. *** End ***	6M	CO5	L3

Г											
	Hall Ticket Number	er:								•	
	Code: 20A251T								R-2	0	
	III B.Tecl	h. I Seme	ster Su	opleme	entary	' Exan	nina	tions Jur	ne 2024		
		·		ar Cont	-						
	Max. Marks: 70	(Elec	frical a	nd Elect	fronic	s Engir	neeri	ng)	Time: 3		
	Max. Marks. 70			****	****				nine. s	HOUIS	
	Note: 1. Question F	aper consi	ists of tv	vo parts	(Part-	A and I	Part-l	В)			
	2. In Part-A, e	ach questi	on carri	es Two n	narks.						
	3. Answer AL l	L the quest	ions in I			t-B					
				<u>PAR</u>		tion)					
4		uine elecate	•	ompulsor		•	1014	`			
1.7	Answer all the follow	•	-	uestions	(:	5 X 2 =	TUN)		CO E CO1 B	BL
	a) What is an oper			ronhO						сот в СОЗ В	
	b) Give the proper	Ũ	0	•	dor of a	o voto	m 2			соз в СО2 В	
	c) What is the diffe					-	111 :			сод В	
	d) What is called ae) Give the limitation	• •	•	•						CO4 B	
			Jency le	PAR	•	5.			(JU3 D	LZ
	Answer <i>five</i> ques	stions by c	hoosin			from	each	unit (5 x	12 = 60 Ma	rks)	
	Allottol mo quo			9 0110 90			ouon		Marks	CO	BL
				UNI	T-I						
2. a) Compare open lo	oop and clos	sed loop	control s	ystems	with su	uitable	e examples	s. 4M	CO1	BL1
b) Simplify the bloc	k diagram s	hown be	low and c	determ	ne its t	ransfe	er function.			
			Г	→ G ₄]			12			
	+0 +0		+				_ ↓ +				
		Gı		→ G2	G		►⊗-	C C			
							1				
		. HL			[,	I2		4			
					L						
								1	8M	CO3	BL2
0			(OR			•			000	D . <i>i</i>
3. a	· ·	•				•		Macan'a a	4M	CO2	BL1
b) Obtain the overa formula.	in gain for tr		ing signa	u now	yrapri t	ising	wasun s g	alli		

8M CO3 BL2

		oae: 20A	42511	
	UNIT-II			
4. a)	What are generalized error constants? State the advantages of generalized error Coefficients.	6M	CO1	BL1
b)	Derive the expressions for peak time and settling time of standard 2nd order system when subjected to a unit step input.	6M	CO3	BL2
	OR			
5. a)	The characteristic polynomial of a system is			
	$s^7+9s^6+24s^5+24s^4+24s^3+23s^2+15s=0$. Determine the location of roots on			
	s-plane and hence the stability of the system.	6M	CO4	BL2
b)	Sketch the root locus of a feedback system when open loop transfer		001	DLL
0)				
	function is given by: $G(s).H(s) = \frac{K}{S(S+3)(S+5)}$	6M	CO5	BL3
	UNIT-III			
6. a)	Draw the characteristic Nyquist plots. Give the procedural steps.	5M	CO2	BL2
b)	Construct Nyquist plot for a feedback control system whose open loop			
,				
	transfer function is given by $G(s) = \frac{S}{(S-1)(S+1)}$ comment on stability of open			
	loop and closed loop system.	7M	CO4	BL3
	OR			
7.	Sketch the Bode plot for the open-loop transfer function for the unity feedback system given below and obtain gain cross over frequency			
	$G(s) = \frac{20}{s(1+3s)(1+4s)}$			
	s(1+3s)(1+4s)	12M	CO5	BL3
	UNIT-IV			
8. a)	Draw electrical network configuration for phase lead compensator and			
	hence derive the transfer function for the same.	7M	CO3	BL2
b)	Explain the design procedure for lag compensation in frequency domain. OR	5M	CO2	BL1
9.	The open-loop transfer function of a unity feedback control system is given			
	by $G(S) = \frac{K}{S(1+0.2S)}$. Design a suitable compensator such that the			
	system will have K_v = 15 and PM = 50°	12M	CO4	BL3
	UNIT-V			
10. a)	Find the transfer function of the system with state space representation.			
	$\dot{q} = Aq + Bu = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -4 & -2 \end{bmatrix} q + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$			
	$q = Hq + Du = \begin{bmatrix} 0 & 0 & 1 & q + 0 & u \\ 2 & 4 & 2 & 1 \end{bmatrix}$			
	y=Cq+Du =[5 1 0]+0.u	8M	CO3	BL2
b)	Explain properties of state transition matrix.	4M	CO2	BL1
	OR			
11. a)	Define Observability and explain	4M	CO2	BL1
b)	Consider the system $xc(k+1)=Ax(k)+Bu(k)$, $y(k)=Cx(k)$. where			
	$ \left\{ A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} and C = \begin{bmatrix} 0 & 1 \end{bmatrix} \right\} $			
	Show if the system is controllable. Find the transfer function $\frac{Y(z)}{W(z)}$. Can			
	U(z)		00 f	
	you see any connection between controllability and the transfer function? *** End ***	8M	CO4	BL2

H	all Ticket Number :			
Co	de: 20A252T	R-20		
	III B.Tech. I Semester Supplementary Examinations June 2	024		
	Power Electronics (Electrical and Electronics Engineering)			
Мс		Time: 3 H	lours	

Not	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
1 4 0 0 0	(Compulsory question) ($F X 2 = 10M$)		со	BL
	ver <i>all</i> the following short answer questions (5 X 2 = 10M) fine Turn on time of a SCR		1	
,		t ratina	I	1
	at is the difference between repetitive current and surge curren	rating	2	2
_	at is the function of freewheeling diode in a rectifier circuit?		2	
	fine the term ripple factor.		3 4	
		voltago	4	1
,	hat is the ac machine used to serve the same purpose of ac ventroller?	vollage	5	3
001			5	5
	$\frac{PART-B}{F}$			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$	() Manlza (
		0 Marks)		
		0 Marks) Marks	СО	BL
	UNIT-I			BL
2. a				BL 1
2. a b) Explain dynamic characteristics of SCR	Marks	со	
_) Explain dynamic characteristics of SCR	Marks	CO 1	1
) Explain dynamic characteristics of SCR) Describe dv/dt triggering of SCR OR	Marks	CO 1	1
b 3. a	 Explain dynamic characteristics of SCR Describe dv/dt triggering of SCR OR Explain the operation of a power MOSFET. 	Marks 6M 6M 6M	CO 1 1 1	1 2 1
b	 Explain dynamic characteristics of SCR Describe dv/dt triggering of SCR OR Explain the operation of a power MOSFET. What is commutation? Explain voltage commutation. 	Marks 6M 6M	CO 1 1	1 2
b 3. a b	 Explain dynamic characteristics of SCR Describe dv/dt triggering of SCR OR Explain the operation of a power MOSFET. What is commutation? Explain voltage commutation. UNIT-II 	Marks 6M 6M 6M 6M	CO 1 1 1	1 2 1
b 3. a	 Explain dynamic characteristics of SCR Describe dv/dt triggering of SCR OR Explain the operation of a power MOSFET. What is commutation? Explain voltage commutation. UNIT-II Describe the current ratings of SCR for repetitive and 	Marks 6M 6M 6M	CO 1 1 1	1 2 1 2
b 3. a b 4. a) Explain dynamic characteristics of SCR) Describe dv/dt triggering of SCR OR) Explain the operation of a power MOSFET.) What is commutation? Explain voltage commutation. UNIT-II) Describe the current ratings of SCR for repetitive and non-repetitive type of waveforms. 	Marks 6M 6M 6M 6M	CO 1 1 1	1 2 1
b 3. a b) Explain dynamic characteristics of SCR) Describe dv/dt triggering of SCR OR) Explain the operation of a power MOSFET.) What is commutation? Explain voltage commutation. UNIT-II) Describe the current ratings of SCR for repetitive and non-repetitive type of waveforms.) Demonstrate Over voltage protection by Metal Oxide 	Marks 6M 6M 6M 6M	CO 1 1 1 1 2	1 2 1 2
b 3. a b 4. a	 Explain dynamic characteristics of SCR Describe dv/dt triggering of SCR OR Explain the operation of a power MOSFET. What is commutation? Explain voltage commutation. UNIT-II Describe the current ratings of SCR for repetitive and non-repetitive type of waveforms. Demonstrate Over voltage protection by Metal Oxide Varistors. 	Marks 6M 6M 6M 6M	CO 1 1 1	1 2 1 2
b 3. a b 4. a b	 Explain dynamic characteristics of SCR Describe dv/dt triggering of SCR OR Explain the operation of a power MOSFET. What is commutation? Explain voltage commutation. UNIT-II Describe the current ratings of SCR for repetitive and non-repetitive type of waveforms. Demonstrate Over voltage protection by Metal Oxide Varistors. OR 	Marks 6M 6M 6M 6M	CO 1 1 1 1 2 2	1 2 1 2 1 3
b 3. a b 4. a	 Explain dynamic characteristics of SCR Describe dv/dt triggering of SCR OR Explain the operation of a power MOSFET. What is commutation? Explain voltage commutation. UNIT-II Describe the current ratings of SCR for repetitive and non-repetitive type of waveforms. Demonstrate Over voltage protection by Metal Oxide Varistors. OR Explain di/dt protection of SCR with the help of inductor. 	Marks 6M 6M 6M 6M	CO 1 1 1 1 2	1 2 1 2

UNIT-III

6.	Draw the circuit diagram and currentwave forms for single phase fully controlled bridge rectifier with RL load in continuous current mode for various firing angles. Derive the generalized expression for average output voltage.	12M	3	3
	OR			
7.	Draw and explain the operation of three phase uncontrolled rectifier and draw the voltage and current waveforms for various elements in the circuit. Derive the express for average output voltage and current.	12M	3	3
8.	Draw and explain the operation of Boost converter with			
	relevant waveforms. Derive the expression for average output voltage.	12M	4	3
	OR			
9.	Explain the operation of single quadrant and two quadrant choppers.	12M	4	2
10. a)	Draw and explain the operation of single phase series inverter.	6M	2	2
b)	Describe the working of full wave type ac voltage regulator with RL load. Draw voltage and current waveforms.	6M	2	2
11 a)	Explain operation and control of single phase full bridge			
тт. a)	inverter.	6M	2	2
b)	Explain the working of single phase bridge type Cyclo- converter for step down operation. *** End ***	6M	2	2

	На	Il Ticket Number :			
L	Cor	de: 20A25DT	R-20		
		III B.Tech. I Semester Supplementary Examinations June 2	2024		
		Renewable Energy Systems			
		(Electrical and Electronics Engineering)			
	Ma	x. Marks: 70	Time: 3 H	ours	
	Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
	1101	2. In Part-A, each question carries Two marks.			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u> (Compulsory question)			
1.7	Ansv	ver all the following short answer questions $(5 \times 2 = 10M)$	(CO E	BL
		fine solar constant.		1	1
b)	Sta	ate the principle involved in generating solar power.		2	2
c)		w are winds classified?		3	2
d)	Lis	t the characteristics of the tide.		4	1
e)	Wł	nat is geothermal field?		5	1
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$	-	~~	Б.
			Marks	CO	BL
0	-)		- 1		
2.	a)	Compare and contrast the availability of conventional and nonconventional energy sources.	ai 6M	1	2
	b)	Explain the construction and working of pyranometer instrument used for	-		2
	0)	measuring the solar radiation.	6M	1	2
		OR			
3.	a)	Define Renewable Energy Source. Discuss the advantages and limitation	S		
		of Renewable Energy Sources.	6M	1	2
	b)	Write a short note on (i) Sun shine recorder, (ii) Solar radiation data	6M	1	1
		UNIT-II			
4.	a)	What is flat plate collector? Explain	6M	2	2
	b)	Explain the heat transport system used in liquid collectors.	6M	2	2
		OR			
5.	a)	How can classification of solar energy storage system be done? Explain		-	_
		them briefly	6M	2	2
	b)	Describe the construction of solar cell and solar PV panel.	6M	2	1
6.	a)	Discuss the advantages and disadvantages of Wind Energy Conversio	n 6M	3	2
	b)	system. Derive the expression for Power in wind by stating the assumptions.	6M	3	2
	5)	OR	OW	5	5
7.	a)	In details, discuss the site selection considerations for installation of	h		
1.	aj	WECS.	6M	3	2
	b)	Explicate in brief the performance characteristics of wind machines.	6M	3	3
	,				

UNIT-IV

8.	a)	Explain the 'single-basin' and 'two-basin' systems of tidal power			
		harnessing. Further, discuss their advantages and limitations.	7M	4	2
	b)	What are the factors affecting the feasibility of a tidal power plant?	5M	4	1
		OR			
9.	a)	Explain different wave energy conversion machines	6M	4	2
	b)	6M	4	2	
		UNIT-V			
10.	a)	Describe in detail how biomass conversion takes place	7M	5	2
	b)	Explain the combustion characteristics and economic aspects of biogas.	5M	5	2
		OR			
11.	a)	Explain a hot dry rock type Geothermal resource power plant.	5M	5	2
	b)	Describe in detail the operation dry binary cycle geothermal power plant. *** End ***	7M	5	2

Hall Ticket N	umber :												
Code: 20A253	Т										R-20		
III B.	ech. I S Flect	emeste r ic Pow		•	-						24		
	LICCI	(Electric	-			-		-					
Max. Marks: 7	0	,			****		0		0,	Ti	me: 3 Ho	ours	
Note: 1. Quest	on Paper	consists	oftw			A an	nd Pa	art-B)				
2. In Part	•			•	•	, t an			,				
3. Answe	r ALL the	question	ns in Pa	art-A a	nd Par	t-B							
			1.		<u>RT-A</u>								
	<i>.</i>		-	npulso			•	4.01			~~~	ы	
1. Answer all th a) Discrimi		-				(5)	X 2 =	= 10	M)		CO 1	BL 2	
b) Define S			anum	utuare							2	2	
c) Define S											3	2	
d) What is	•	•	ndergr	ound ca	able						4	2	
e) Define F	Restriking	Voltage	and R	ecovery	/ Volta	ge					5	2	
					<u> RT-В</u>	-			•. •				
Answer five	question	s by cho	osing	one qu	lestion	n fro	om ea	ach	unit (5 x 12 =		-	
					IIT-I						Marks	CO	
a) Explain the	e concept	of self G	MD ar	I		D fo	r eva	aluat	ing inc	luctance			
of transmis	ssion lines	5.							-		6M	1	
b) Determine The radius		-	r is 15	mm.				it 3-p	bhase	line.			
	a	b	c	a'		b'	Ċ	, , , , , , , , , , , , , , , , , , ,					
	i4 -1	.75 m — 1.7	5 m 🚽	1.75 m 🛶	–1.75 m –	1.75	5 m →				6M	1	
					D R								
a) Deduce t transmissi	•	ession f	or inc	luctanc	e of	a t	WO-V	wire,	singl	le-phase	6M	1	
b) Calculate		ritance o	fathr	oo nha	sa thra		viro ti	rane	hasad	system	OIVI	I	
When the	-			-						-			
measuring	1m,2m a	nd 3m.D	iamete	r of ea	ch con	ducto	or is	1.50	m		6M	1	
				l	IT-II							_	
a) Explain the						Ŭ					6M	2	
b) A load of t impedance	•		•	• •				•		•			
the power	· · · ·		• •	•	•								
connected											6M	2	
			- 6	-	DR T			line a					
a) Derive AE Method	SCD Para	ameters	oran	neaium	i irans	smis	sion	i iine		ominai	6M	2	
b) Determine	the sendi	ing end v	oltage	current	t, powe	er and	oa b	wer f	actor f	for a 160	0111	-	
km sectior		•	•		•		•						
Also find t		•	•										
ohm per k D paramet	•	•			transp	oseo	d. EV	/alua	ite the	А, В, С,	6M	2	
	aisu.	Diametel	1.900	юнн. -							UN	2	

			e: 20A25	31	
		UNIT-III			
6.	a)	Explain about the types of insulators used for overhead lines.	6M	3	2
	b)	A conductor with [2.5 cm dia is passed centrally through a porcelain bushing $_r$ = 4 having internal and external diameters of 3 cm and 9 cm respectively. The voltage between the conductor and an earthed clamp surrounding the porcelain is 20 kV r.m.s. Determine whether corona will be			
		present in the air space round the conductor.	6M	3	3
		OR			
7.	a)	Derive the expressions for sag and tension when the supports are at unequal heights.	6M	3	2
	b)	A string of eight suspension insulators to be graded to obtain uniform distribution across the string. If the capacitance of the top unit is 10times the capacitance to ground of each unit, determine the capacitance of the			
		remaining seven units.	6M	3	3
		UNIT-IV			
8.	a)	Explain about different types of cables with neat diagram	6M	4	2
	b)	The capacitance of a 3-core cable belted type are mrasured and found to be as follows:			
		(i) between 3-cores bunched together and the sheath 8 μF			
		(ii)between conductor and the other two connected together to the sheath 5 μF			
		Calculate the capacitance to neutral and the total charging kVA when the		4	0
		cable is connected to a 11kV 50Hz 3-phase supply.	6M	4	3
0		OR	CN4	4	2
9.	a) b)	Explain briefly about the methods of Grading in Cables.	6M	4	2
	b)	The capacitance of a 3 core lead sheathed cable measured between any two of the conductors with sheath earthed is $0.19 \mu\text{F}$ per km. Determine the equivalent			
		star connected capacity and the kVA required to keep 16 kms of the cable charged when connected to 20 kV, 50 Hz supply.	6M	4	3
			Olvi	-	5
10.	a)	Explain with neat sketches the constructional and working of the SF6 circuit			
	u)	breakers.	6M	5	2
	b)	A circuit breaker is rated 1500A,1000 mva,33Kv,3 sec ,3-phase oil circuit			
		breaker Find (i) the rated normal current (ii) breaking current (iii) making current (iv) short time rating current	6M	5	3
		OR	0	Ū	U
11.	a)	Discuss the principle of operation of an air-blast circuit breaker. What are the			
	,	advantages and disadvantages of using air as the arc quenching medium?	6M	5	2
	b)	A Circuit breaker is rated as 1500A,1000 MVA,33 Kv,3-Second,3-Phase oil circuit breaker .Find (i) rated normal current (ii) breaking capacity (iii) rated symmetrical breaking current (iv) rated making current (v)short-time rating			
		(vi) rated service voltage	6M	5	3
		*** End ***			

*** End ***

Code: 20A253T