Hall Ticket Number : \square

Code: 1GA51

R-11/R-13
III B.Tech. I Semester Supplementary Examinations November 2016

Managerial Economics and Financial Analysis

Max. Marks: 70
(Common to CE, ME and ECE)

Answer any five questions
All Questions carry equal marks (14 Marks each)
Al

Time: 3 Hours

1. Define Managerial Economics. Explain the relationship of managerial economics with other fields of study.
2. What do you understand by Demand function? Explain about the determinants of Demand.
3. From the following data calculate
a. P/V Ratio
b. Profit when sales are Rs $5,00,000$
c. New Break-Even Point, if the selling price is reduced by 20%

Fixed expenses Rs. 1,00,000
Break even point Rs. 2,50,000
4. How is price determined under competitive conditions? 14M
5. "Joint stock company form of organisation is better than Partnership", explain. 14M
6. Given the following information for two project proposals. Rank them by applying the criteria of
a. Payback method
b. ARR

Year	Proposal 1 Cash Inflows in Rupees	Proposal 2 Cash Inflows in Rupees
1	11,750	13,500
2	12,250	12,500
3	12,500	12,250
4	13,500	11,750

7. From the following transactions prepare journal entries and post them in the appropriate Ledger accounts, in the books of AVINASH\&CO.
2008, May 1 Commenced Business with Rs 1,00,000
May 5 Purchased goods from Rahul\&Co Rs10,000
May 7 Sold goods worth Rs20,000
May 10 Salaries paid Rs1,500
May 11 Purchased Stationery worth Rs 1,000
May 15 Bought furniture worth Rs20,000
May 18 Cash deposited into bank Rs9,000
May 20 Paid wages Rs5,000
May 24 Cash withdrawn from bank Rs3,000
May 28 Paid rent by cheque Rs1,800
8. Following is the summarised Balance sheet of Verizon Company Ltd as on $31^{\text {st }}$ December 2015.

Balance sheet as on 31 ${ }^{\text {st }}$ December 2015

Liabilities	Rs	Assets	Rs
Equity Share Capital	$2,50,000$	Goodwill	20,000
6\% Preference Share Capital	$1,50,000$	Land \& Buildings	$2,50,000$
Reserves \& Surplus	20,000	Machinery	$1,75,000$
5% Debentures	$1,00,000$	Furniture	10,000
Profit \& Loss	15,000	Stock	90,000
Sundry Creditors	28,000	Debtors	21,000
Bills Payable	12,000	Cash at Bank	5,000
		Patents	4,000
	$\mathbf{5 , 7 5 , 0 0 0}$		$\mathbf{5 , 7 5 , 0 0 0}$

Additional Information: Total sales Rs4,00,000; in that 20% of which is made on credit. Gross Profit is Rs 80,000 and Net Profit is Rs20,000.
Comment on the Financial condition of the Verizon Company Ltd by calculating
a. Current Ratio
b. Quick Ratio
c. Debt-equity Ratio
d. Gross Profit Ratio
e.Net Profit Ratio
f. Stock turnover ratio

Hall Ticket Number :
R-11/R-13
Code: 1G651
III B.Tech. I Semester Supplementary Examinations November 2016

Structural Analysis II

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours

Answer any five questions

 All Questions carry equal marks (14 Marks each)1. A three hinged parabolic arch has a span of 60 meters and rise of 10 meters. The arch carries two concentrated loads of 150 kN and 100 kN at distances of 10 m and 20 m from the left end. It also carries UDL of $60 \mathrm{kN} / \mathrm{m}$ on the right half of the span. Calculate the reaction components at supports. Also calculate the normal thrust and radial shear at a section 15 m from the left support.

2. a) What is the effect of "Rib shortening"
b) A two hinged parabolic arch of span 50 m and rise 5 m is subjected to a central concentrated load of 60 kN . It has an elastic support which yields by 0.0001 $\mathrm{mm} / \mathrm{kN}$. Taking $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}, \mathrm{I}=5 \times 10^{9} \mathrm{~mm}^{4}$, Average area $\mathrm{A}_{\mathrm{m}}=10000 \mathrm{~mm}^{2}$, $\alpha=10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and assuming secant variation, calculate the horizontal thrust developed when the temperature rises by $15^{\circ} \mathrm{C}$.
i. Consider rib shortening
ii. Neglect rib shortening
3. Determine the moments at each joint of the frame shown in Figure and draw the Bending moment diagram. The supports at A and D are fixed and joint C is assumed pin connected. El is constant for each member. Use slope deflection method.

4. Determine the moments at D and C, then draw the moment diagram for each member of the frame. Assume the supports at A and B are pins. El is constant. Use Moment Distribution method.

5. Analyze the continuous beam shown in Figure. The relative value of I for each span are indicated along the members and take E is constant for all members.

6. Determine the reactions at the supports A, B and C, then draw the shear and
bending moment diagrams. Assume El is constant.

7. The beam shown in Figure is subjected to the two couple moments. If the center support B settles 1.5 mm , determine the reactions at the supports. Assume the roller supports at A and C. Take $E=200 \mathrm{GPa}$ and $\mathrm{I}=22 \times 10^{-6} \mathrm{~m}^{4}$.

8. a) Calculate the shape factors
i. Triangle with depth 5 m and width 3 m .
ii. Square with one diagonal horizontal of side $2 \mathrm{~m} \quad 4 \mathrm{M}$
b) Explain the lower and upper bound theorem. 10M

Code: 1G653

III B.Tech. I Semester Supplementary Examinations November 2016

Engineering Hydrology-I

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All questions carry equal marks (14 marks each)

1. a) The normal annual precipitation of five raingauge stations P, Q, R, S and T are respectively $125,102,76,113$, and 137 cm . During a particular storm the precipitation recorded by stations P, Q, R and S are 13.2, 9.2, 6.8 and 10.2 cm respectively. The instrument at station T was inoperative during that storm. Estimate the rainfall at station T during that storm.
b) Represent hydrologic cycle in the form of a diagram and explain in brief. 7M
2. a) Define evaporation and explain any one method to measure evaporation.
b) What is infiltration and how do various factors influence infiltration.
3. a) Give the definition for runoff and explain the various components of runoff.
b) List out the various techniques available to measure stream flow and explain any one technique in detail.
4. a) Two catchments A and B are considered meteorologically similar. Their catchment characteristics are given below.

Catchment A
L=30 km
$\mathrm{L}_{\mathrm{ca}}=150 \mathrm{~km}$
Catchment B
$\mathrm{L}=45 \mathrm{~km}$
$\mathrm{L}_{\mathrm{ca}}=25 \mathrm{~km}$
A=250 km ${ }^{2}$

For catchment A, a 2-h unit hydrograph was developed and was found to have a peak discharge of $50 \mathrm{~m}^{3} / \mathrm{s}$. The time to peak from the beginning of the rainfall excess in this unit hydrograph was 9.0 h . Using Snyder's method develop a unit hydrograph for catchment B.
b) Define unit hydrograph. Also, give the limitations and applications of unit hydrograph. 7M
5. a) Derive the expression for rate of flow for a case of steady flow into a well in a confined aquifer.
b) What are the various types of wells.
6. Explain various types of irrigation in detail.
7. a) Give a diagrametric representation of vertical distribution of soil moisture. 7M
b) Define the terms duty and delta. Also derive the relation between them.
8. a) Using Lacey's theory design a channel section for the following data.

Discharge $Q=30$ cumecs, silt factor $f=1.00$, side slope $=(1 / 2): 1$. Find also the longitudinal slope.
b) Write short notes on canal lining.

Code: 1G655

III B.Tech. I Semester Supplementary Examinations November 2016

Design and Drawing of Reinforced Concrete Structures

(Civil Engineering)
Time: 3 Hours
use of IS 456:2000, SP 16 Design aided charts only and IS:875 (Part 1 \& Part 2) books
is permitted in the examination hall.

PART - A

(Answer any one question) $1 \times 28=28$ marks

Abstract

1 Design a slab for a room of clear internal dimensions $3 \mathrm{~m} \times 5 \mathrm{~m}$ supported on walls of 300 mm thickness with corners held down. Two adjacent edges of the slab are continuous and the other two discontinuous. Live load on the slab is 3 $\mathrm{KN} / \mathrm{m}^{2}$, Floor finish is $1 \mathrm{KN} / \mathrm{m}^{2}$. Use M_{20} grade concrete and Fe_{415} grade steel. Draw the cross section of the designed slab showing clearly the bar bending schedule of the reinforcement.

2 Design a sloped square footing to transfer a dead load of 1000 KN and an imposed load of 400 KN from a square column $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ (with 16 mm diameter bars). Use M_{20} grade concrete and Fe_{415} grade steel. Safe bearing Capacity of the soil is $200 \mathrm{KN} / \mathrm{m}^{2}$. Draw the sectional elevation of the footing showing reinforcement details.

PART - B

(Answer any three questions) $3 \times 14=42$ marks
3. a) Determine the balanced percentage of reinforcement required for a rectangular beam subjected to flexure, interns of grade of concrete and grade of steel?
b) Define the term "Partial safety factors" as used in limit state design. Identify the various factors and state the values recommended in IS456-2000.
c) Briefly explain stress - block parameters.

$$
\begin{aligned}
& \text { 4. An isolated } \mathrm{T} \text {-beam has flange of } 2400 \mathrm{~mm} \text { wide and } 120 \mathrm{~mm} \text { deep. The effective } \\
& \text { width and depth of web are } 300 \mathrm{~mm} \text { and } 580 \mathrm{~mm} \text { respectively. The tension } \\
& \text { Reinforcement consists of eight bars of } 20 \mathrm{~mm} \text { diameter. The effective span of the } \\
& \text { simply supported beam is } 3.6 \mathrm{~m} \text {. Determine the moment of resistance of the } \\
& \text { beam? Use } \mathrm{M}_{20} \text { grade concrete and Fe }{ }_{415} \text { grade steel. }
\end{aligned}
$$

b) Define development length. What is its significance?
c) Design the shear reinforcement for a beam of size $230 \mathrm{~mm} \times 450 \mathrm{~mm}$ subjected to a shear force of 80 KN . The tension reinforcement is four bars of 16 mm diameter. Use Fe_{500} grade steel and M_{25} grade concrete.

6. a) What is the maximum length of columns allowed by IS code for R.C. columns?
Give reasons for specifying their limits.
b) Design the reinforcements in a rectangular column of size300mm $\times 500 \mathrm{~mm}$ to support a design ultimate load of 500 KN , together with a factored moment of 200KN.m. Use M_{20} grade concrete and Fe_{415} grade steel.
b) A simply supported rectangular beam of effective span 6 m is having breadth 230 mm and effective depth of 450 mm . Tension steel provided is six numbers of 20 mm and compression steel is two numbers of 16 mm diameter bars. The beam is loaded by an uniformly distributed load of $20 \mathrm{KN} / \mathrm{m}$. Estimate the short term deflection?
