Hall Tic	ket Number :]]
Code: 10	G153	J					1	1			1	R-	11/R	-13
III B.Tech. I Semester Supplementary Examinations November 2016														
				mpu										
(Common to CSE & IT)														
Max. Marks: 70 Time: 3 Ho Answer any five questions						IOUrs								
		Juestic									-h)			
All Questions carry equal marks (14 Marks each)														
1 2)	Draw and exp	lain OS	Iroford		mode	al in	dotai	1						8M
1. a)	Draw and exp			ence	moue		uelai	I						6M
b)	Discuss wirele	SS LAN	IS											OIVI
2. a)	What is switch	ning? Ex	kplain d	circuit	t swit	chin	g and	d pac	ket s	switcl	hing n	etwo	rks	7M
b)	What is PSTN? Explain structure of the telephone system							7M						
3. a)	a) What are the design issues of data link layer? Explain						7M							
b)	b) Explain one bit sliding window protocol							7M						
4. a)	4. a) Discuss channel allocation problems							7M						
b)	Explain 802.11 protocol stack							7M						
5. a)	What is flooding? Explain hierarchical routing						7M							
b)	What is congestion control? Explain congestion prevention policies						7M							
6.	Discuss the network layer in the internet						14M							
7.	What are the transport layer services? Explain the difference between TCP and UDP					TCP	14M							
8. a)	Discuss the w	orld wic	le web											7M
b)	Write short no	tes on r	nultime	edia										7M
					**:	*								

Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Time: 3 Hours

Code: 1G154

III B.Tech. I Semester Supplementary Examinations November 2016

Operating Systems

(Computer Science and Engineering)

Max. Marks: 70

Answer any **five** questions

All questions carry equal marks (14 marks each)

- 1. a) Define Operating System? State and explain the basic functions or services of an operating system?
 - b) Describe the operating system structures.
- 2. a) Explain process state transition diagram with examples.
 - b) Suppose the following jobs arrive for processing at the times indicated, each job will run the listed amount of time

Jobs	Arrival Time	Burst Time (in secs)
1	0.5	8
2	0.9	4
3	2.0	2

Give Gantt chart illustrating the execution of these jobs using the non pre-emptive FCFS and SJF scheduling algorithms. Compute the average turnaround time and average waiting time of each job for above algorithms.

- 3. a) What is semaphore? Explain the method of application of semaphore for process synchronization?
 - b) Define Monitor. Distinguish between monitor and semaphore. Explain in detail a monitor with notify and broadcast functions using an example.
- 4. a) Explain about deadlock detection method in detail.
 - b) Describe resource-allocation graph? Explain how resource graph can be used for detecting deadlocks.
- 5 a) Explain contiguous memory allocation concept with advantages and disadvantages.
 - b) Consider the following page reference string.:
 - 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

Calculate how many page faults would occur for the following replacement algorithms, assuming the frame size to be 4. Assume that the frames are initially empty

- i. LRU replacement
- ii. FIFO replacement
- iii. Optimal replacement
- 6. a) Explain indexed file and indexed sequential file organization.
 - b) Describe the following Directory Implementation methods?
 - i. Linear list
 - ii. Hash Table
- 7. a) Explain magnetic disk structure and its management.
 - b) Exemplify swap space management.
- 8 a) Describe how the matrix facility and role-based access control facility are similar? How do they differ?
 - b) Briefly explain about computer security classifications.

Hall Tic	ket Number :	
Code:	1G355 R-	11/R-13
	III B.Tech. I Semester Supplementary Examinations November	2016
	Microprocessors and Interfacing	
Max N	(Common to CSE & IT) Aarks: 70 Ti	me: 3 Hours
iviax. r	Answer any five questions	
	All Questions carry equal marks (14 Marks each)	

1. a)	Explain different registers in 8086	10M
b)	Discuss the advantages of segmentation	4M
2. a)	Write alp to find the largest number in an array of words	4M
b)	Using string instruction and assembler directives insert the word "c	U
	in "I am student" after I am.	10M
3. a)	Differentiate I/O and memory mapped I/O interfacings.	4M
b)	Explain the 8255 block diagram	10M
,		
4. a)	List the differences between SRAM and DRAM	4M
b)	Design the interfacing structure to connect four 8K RAMs and t	
	ROMs to 8086 processor.	10M
5. a)	Explain the structure of interrupts in 8086.	7M
b)	With neat block diagram discuss bout 8253.	7M
6. a)	Write a program to transfer data serially with odd parity, 7-bit ch	
	code, one stop bit at speed of 16x.	7M
b)	What is the necessity of RS232 to TTL conversion? How to convert.	7M
7. a)	Find the differences between real and protected mode.	4M
b)	Write short notes on how the features implemented in Pentium pro	cessor
	improve the performance.	10M
8. a)	Explain internal memory architecture of 8051.	10M
b)	Write the program to multiply two numbers in 8051.	4M

Hall Tic	cket Number :						
Code: 1G151							
III B.Tech. I Semester Supplementary Examinations November 2016							
Compiler Design							
	(Computer Science and Engineering)						
Max. M	Max. Marks: 70 Time: 3 Hou Answer any five questions						
	All questions carry equal marks (14 Marks each)						
1. a)	Draw the transition Diagram for identifiers, constants and relational operators	7M					
b)	Construct an NFA for the regular expression $r = (aa)^*.(bb)^*+a(aa)^*.b(bb)^*$	7M					
2.	Construct the predictive parsing table for the following grammar						
	S→L=R/R ; L→*R/id R→L	14M					
3. a)	$S \rightarrow Aa/bAc/Bc/bBa$	014					
b)	$A \rightarrow d$, $B \rightarrow d$ Find the collection of sets of LR(0) items Construct the SLR parsing table	8M					
6)	S→(S)S/ €						
		6M					
4. a)	Construct the LR(1) items for the following grammar						
	S→CC						
	C→aC/d	8M					
b)	Describe in detail about abstract syntax tree	6M					
5. a)	Explain the Applications of syntax directed translations	10M					
b)	Define S-Attributed and L-Attributed Definitions	4M					
6. a)	Draw the DAG for the arithmetic expression $a+a^{(b-c)+(b-c)*d}$. Show the steps for constructing the DAG	10M					
b)	Define and explain the Back-patching?	4M					
7. a)	Write an algorithm for constructing the natural Loops	7M					
b)	What is Flow graph? How given program can be converted into flow graph?	7M					
8. a)	Explain the code generation algorithm an generate code for the following						
,	expression $x=(a-b)+(a+c)$	10M					
b)	Explain about various object code forms	4M					
