		Hall Ticket Number :												
		Code: 5G564												
		III B.Tech. II Semester Regular Examinations May 2018 Applied Thermodynamics-III (Mechanical Engineering)												
		Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)												
		Note: Refrigeration & Air-Conditioning tables are allowed Symbols and abbreviations are having their regular meaning.												
1.		Describe briefly with the help of neat sketches and T- <i>s</i> diagrams, various methods employed for improvement of thermal efficiency of an open cycle gas turbine plant.	14M											
2.		A turbojet engine flying at a speed of 925 km/h consumes air at the rate of 60 kg/s. Calculate: (i) Exit velocity of jet when the enthalpy change for the nozzle is 210 kJ/kg and velocity co-efficient is 0.96, (ii) Fuel flow rate in kg/s when air-fuel ratio is 72:1, (iii) Thrust specific fuel consumption, (iv) Thermal Efficiency of the plant when the combustion efficiency is 91% and calorific value of fuel is 44500 kJ/kg,												
		(v) Propulsive power and (vi) Propulsive efficiency. UNIT-II	14M											
3.	a)	Briefly explain the working of an air-refrigeration system with neat sketch. Represent the cycle on <i>P</i> - <i>h</i> and T-s charts.	7M											
	b)	An ice plant produces 12 tonnes of ice per day at 0°C using water at room temperature of 30°C. Calculate the power rating of the compressor-motor if the COP of the plant is 3. Consider overall electro-mechanical efficiency of compressor-motor is 0.9.												
		Consider latent of heat of freezing for water is 335 kJ/kg.	-14											
		Specific heat of water is 4.184 kJ/kgK	7M											
4.		OR A vapour compression refrigerator circulates 5.2 kg of NH ₃ per minute. Condensation takes place at 32°C and evaporation at -12°C. There is no sub-cooling of the refrigerant. The temperature after isentropic compression is 80°C and specific heat of superheated vapour is 2.76 kJ/kgK. Calculate:												
		 i. Co-efficient of Performance of the refrigerator, ii. Ice produced in kg per hour in the evaporator form water at 32°C to ice at 0°C. Consider latent heat of fusion of ice = 336 kJ/kg, specific heat of water = 4.187 kJ/kgK, and iii. The effective swept volume of the compressor in m³/min. 	14M											
5.		Describe the working of a NH_3 - H_2O vapour absorption refrigeration system with a neat sketch. OR	14M											
6.		In an absorption refrigeration system, the generator, condenser and evaporator temperatures are 112°C, 40°C and -10°C respectively. Calculate the ideal COP of the system. Calculate the change in COP in the following cases occurring independently. (i) Generator temperature increases by 20°C, (ii) Condenser temperatures decreases by 10°C and (iii) Evaporator temperature rises by 8°C.	14M											
7.		120 m ³ of air per minute at 40°C and 65% relative humidity is cooled to 20°C DBT by passing through a cooling coil. Calculate:												
		 (i) Capacity of cooling coil in kJ/h (ii) Amount of water vapour removed per hour, (iii) Relative humidity of air at its exit and (iv) WBT of air at its exit. 	14M											
0	c)	OR Describe the working of a winter air conditioning system with a past sketch	714											
8.	a) b)	Describe the working of a winter air-conditioning system with a neat sketch. Explain the following process with the help of psychrometric chart	7M											
	57	 (i) Sensible heating, (ii) Heating and Dehumidification and (iii) Cooling and Humidification. 	7M											
9.		UNIT-V What are the different air filters used in air-conditioning systems? Explain the advantages and disadvantages of viscous filters over dry filters.	14M											
		OR												
10.		Explain different methods of humidifying the air. Give their relative merits and demerits.	14M											

Hall	Tick	et Number :											
Code	Code: 5G562												
III B.Tech. II Semester Regular Examinations May 2018													
		CAD/CAM											
Max	Ma	(Mechanical Engineering) rks: 70 Time: 3 Hou	irc										
		all five units by choosing one question from each unit (5 x 14 = 70 Marks											
	,	UNIT-I											
1.	a)	Define the term Product Life cycle. Also compare and contrast between the product life cycle in a conventional manufacturing environment and in a											
		computerized manufacturing environment.	10N										
	b)	State the benefits of Computer Aided Design.	4N										
		OR											
2.	a)	What is display unit? Explain screen buffer and scanning related to CAD systems.	7N										
	b)	Explain the concept of various coordinate systems required for geometric	7M										
		display systems. Give an example.	7 10										
3.	a)	What are the various types of curve fitting manipulation techniques? Explain them.	7M										
	b)	State the differences between C-rep and B-rep techniques of solid modeling.											
		OR											
4.		A cubic Bezier curve is defined by the control points as $(1, 3)$, $(4, 5)$, $(5, 7)$ and $(8, 4)$. Find the equation of the curve and calculate the point at u=0.4 and u=0.6.											
		(8, 4). Find the equation of the curve and calculate the point at u=0.4 and u=0.6.											
5.	a)	UNIT-III Discuss the different NC words used in part programming techniques.	7M										
0.	b)	Explain the basic feedback control system used in CNC machine tools.	7M										
		OR											
6.	a)	With a block diagram explain main features of CNC machine tools.	7M										
	b)	Differentiate between manual part programming and computer aided part	led part										
		programming in CNC machines.											
7	2)	UNIT-IV											
7.	a)	What is the basis for forming groups in group technology? Explain the concept of composite part.	7N										
	b)	What are the differences between retrieval and generative type of computer											
		aided process planning? Which is better? Explain your choice.	7N										
		OR											
8.	a)	Explain the benefits of well designed classification and coding system for GT.	7M										
	b)	What is production flow analysis? Discuss various steps involved in it.	7N										
9.	a)	UNIT-V Write the working principle of computer vision system as applied to quality control.	7M										
0.	b)	Explain the application of machine vision in computer aided inspection.	7M										
	,	OR											
10.	a)	What are the types of CMM? State the applications.	7N										
	b)	Distinguish between automation and CIM.	7M										

Hall Ticket Number :						
						R-15

Code: 5G565

III B.Tech. II Semester Regular Examinations May 2018

Design of Machine Elements-II

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

 Design a journal bearing for a centrifugal pump with the following data. Diameter of journal=140mm, load on the bearing=50kN and speed of the journal = 800rpm.

OR

 Design a journal bearing to support a load of 5000N at 720rpm using a hard hardened steel journal and a bronze backed babbit bearing. The bearing is lubricated by oil rings, room temperature is 25^o and oil temperature is 82^o.

UNIT–II

- a) Select a bearing for a 40mm diameter shaft rotates at 400rpm. Due to bevel gear mounted on the shaft, the bearing will have to withstand a 5000N radial and a 3000N thrust load. The life of the bearing expected to be at least 1000hrs.
 - b) Define the static and dynamic load carrying capacities of roller bearing. Write the expressions for the same.
 - 6M

14M

14M

8M

14M

OR

4. A single-row deep groove ball bearing is used to support the lay shaft of a four speed automobile gear box. It is subjected to the following loads in respective speed ratios:

Gear	Axial Load(N)	Radial load(N)	%time engaged
First gear	3250	4000	1%
Second gear	500	2750	3%
Third gear	50	2750	21%
Fourth gear	Nil	Nil	75%

The lay shaft is fixed to the engine shaft and rotates at 1750 rpm. The static and dynamic load carrying capacities of the bearing are 11600 and 17600 N respectively. The bearing is expected to be in use for 4000 hours of operation. Find out the reliability with which the life could be expected.

UNIT-III

 a) Design a connecting rod for a high-speed IC engine using the following data: Cylinder bore = 125 mm Length of connecting rod = 300 mm Maximum gas pressure = 3.5 MPa Length of stroke = 125 mm

Mass of reciprocating parts = 1.6 kg

Engine speed = 2200 rpm

Assume suitable data and state the assumptions you make.

- 6. **a.** Why are connecting rods made of I sections?
 - **b.** What is the force on bolts of big end of connecting rod?
 - c. What is the difference between centre and overhung crankshafts?
 - **d.** Where do you use overhung crankshafts?
 - e. Where do you use centre crankshafts?

UNIT–IV

7. What do you mean by closely coiled spring? How a closely coiled helical spring is modeled for stress analysis and derives the expression for stresses and defections.

OR

8. It is required to select a V-belt drive to connect a 15 kW, 2880 rpm normal torque
A.C. motor to a centrifugal pump, running at approximately 2400 rpm, for a service of 18 hours per day. The centre distance should be approximately 400 mm.
Assume that the pitch diameter of the driving pulley is 125 mm.

UNIT–V

- 9. A pair of spur gears with 20° pressure angle consists of a 25 teeth pinion meshing with a 60 teeth gear. The module is 5 mm, while the face width is 45 mm. The pinion rotates at 500 rpm. The gears are made of steel and heat treated to a surface hardness of 220 BHN. Assume that dynamic load is accounted by means of the velocity factor. The service factor and the factor of safety are 1.75 and 2 respectively. Calculate
 - (i) wear strength of gears;
 - (ii) the static load that the gears can transmit without pitting; and
 - (iii) Rated power that can be transmitted by gears.

OR

- 10. a) State any two reasons for adopting involute curve for gear tooth profile. 4M
 - b) In a pair of spur gears, the number of teeth on the pinion and the gear are 20 and 100 respectively. The module is 6 mm. Calculate
 - i. the centre distance;
 - ii. the pitch circle diameters of the pinion and the gear;
 - iii. addendum and dedendum;
 - iv. tooth thickness and bottom clearance;
 - v. the gear ratio.

10M

14M

14M

14M

Hall	Hall Ticket Number :											
Cod	Code: 5G561 R-15											
	III B.Tech. II Semester Regular Examinations May 2018											
	Instrumentation and Control Systems											
		(Mechanical Engineering)										
		arks: 70 all five units by choosing one question from each unit (5 x 14 = 70 Mark										
7 (115)	** 01		.5 /									
		UNIT-I	8M									
1.												
	b)	List the advantages of the electronic instruments over electrical and mechanical instruments.	6M									
		OR										
2.	a)	Explain about LVDT with a neat sketch.	8M									
	b)	Explicate the working principle of variable inductive transducers.	6M									
3.		Describe the principle of operation of a McLeod gauge with a neat sketch and										
•		mention its applications, merits and demerits.	14M									
		OR										
4.	a)	Explain the working principle of ultrasonic flow meter.	6M									
	b)	Describe the radiation pyrometer with a neat sketch.	8M									
		UNIT-III	10M									
5.	a)	, , , , , , , , , , , , , , , , , , , ,										
	b)	Discuss the working principle of elastic load cells.	4M									
0		OR Describe briefly about the Strain severe conclementar with a next elected	714									
6.		Describe briefly about the Strain gauge accelerometer with a neat sketch.	7M 7M									
	b)	How can seismic instruments can be used as an accelerometer? UNIT-IV	7M									
7.	a)	Explain briefly about resistance strain gauges.	7M									
	b)	Describe about temperature compensation in strain gauges.	7M									
		OR										
8.	a)	Discuss briefly about strain measuring techniques.	7M									
	b)	Distinguish the bonded and unbounded type of resistance strain gauges.	7M									
		UNIT-V										
9.	a)	Explain briefly about the Servomechanisms.	7M									
	b)	Discuss about any three methods of block diagram reduction.	7M									
4.0	、	OR										
10.	a) b)	Represent the mathematical models for thermal systems with an example.	7M									
	b)	Sketch and explain Mason's rule?	7M									

Hall T	icke	et Nur	nber :															
Code	: 5G	566		IJ		II			I	1		1	1]		R·	-15	
III B.Tech. II Semester Regular Examinations May 2018																		
Industrial Management																		
(Mechanical Engineering)																		
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)												Urs						
/ \	115 **			13 O y	CHO	USING	9 0110	•	*****	11 11 0			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 / 1	- /	0 1010	ii ku j	
									UNI									
1.															14M			
2.		Dicci	uss in o	dotail	abo	. 1 i	no o	and (OR Stoff		niza	tion	with	flow	diaar	am	Alco	
Ζ.			in the m							•					ulayi	anı.	AISU	14M
		одріа		ionto	ana	donne	51110 (UNI			gannz	allon	•				1 1101
3.		Defin	e plant	layou	ut. Ex	xplain	l clea	arly a			ous t	ypes	of pl	ant la	ayout	with	neat	
		sketc	hes.															14M
									OR									
4.			data pe		-	-	-	ct ne	etwor	k is	give	n bel	OW.	Indire	ect co	ost of	the	
		proje	ct is Rs.	. 150	-			~ ~	Coo	+ /	Crock		otion]		
			Activi	ty	NON	mal d (wee		on	Cos (Rs.		Crasł ۱)	veek		C	ost (F	₹s.)		
		-	1-2			4	-7		400	· ·		3	- /		775			
		-	1-3			8			250			5			475			
		-	<u>2-3</u> 2-4			<u>6</u> 9			350 450			4 7			450 800			
		-	3-4			5			300			3			600			
		i)	Draw	the p	oroje	ct net	work											
		ii)	Deter	mine	the	optim	um d	lurati	on ai	nd op	otimu	m co	st of	the p	roject			14M
									UNIT									
5.	a)		e Metho		•	•				•				/.				7M
	b)	Distir	nguish b	etwe	en m	icro-r	notio	n an			notio	n stu	dies.					7M
6	2)	Listo	امير م	منہ ما	hout	vorio												414
6.	a) b)		ind expl					•				oontr	ol too	t for (an ita	m ic 1	2 55	4M
	b)		The perf	•				-		•	-							
		(i)	Calcul			-												
		(ii)	If this							•			<i>w</i> ma	iny te	ests p	er 8	hour	
			shift co	ould b	be co	mple	ted o	n the	e ave	rage	?							
		(iii)	If the o	•	-					s lab	our ra	ate is	Rs.	10 pe	er hou	ur, wh	at is	
			the sta	andar	d lab	our c	ost p				_							10M
7	-)					4 -												714
7.	a)	•	ain abou									•						7M
	b)	vvrite	short n	ote o	n Sto	ores n	nana	gem	ent a OR		tores	reco	ras.					7M
8.	a)	Distir	nguish b	etwe	en in	spect	tion a	and a		-	trol.							7M
2.	⊆, b)		ain abou			•						e.						7M
	/					P'					 							
9.		Clear	ly expla	in ab	out t	he fur	nctio	ns of										14M
									OR	2								

10. Define wage incentive. Explain about any three types of wage incentive schemes. 14M

Hall	Tick	et Number :										
Code		P_15										
III B.Tech. II Semester Regular Examinations May 2018												
		Metrology and Surface Engineering										
		(Mechanical Engineering)										
	-	rks: 70 Ill five units by choosing one question from each unit (5 x 14 = 70 Marks **********										
	-)											
1.	a)	Define Fit. Give classification of different types of fits and explain each of them with suitable example.	7M									
	b)	A hole and mating shaft are to have a nominal assembly size of 40 mm. The assembly is to have a maximum clearance of 0.15 mm and a minimum clearance of 0.05 mm. The hole tolerance is 1.5 times the shaft tolerance.										
		Determine the limits for both hole and shaft.	7M									
		OR										
2.	a)	What are various types of plug gauges? Sketch any two of them.	7M									
	b)	State and explain the "Taylor's principle of gauge design".	7M									
3.	a)	Explain the working principle of micrometer with help of neat sketch. What is										
	LX	the function of rachet in micrometer?	7M									
	b)	With a neat sketch describe a method of measuring unknown angle of a component using sine bar.	7M									
		OR										
4.	a)	Describe the working of NPL flatness interferometer with a neat sketch.	7M									
	b)	Explain the working principle of an Autocollimator with a diagram.	7M									
5.		State and explain the different methods of measuring primary texture of a surface	14M									
		OR										
6.	a)	Describe the working principle and advantages of electrical comparator with										
	۲	help of sketch.	8M									
	b)	Differentiate between mechanical and pneumatic comparators.	6M									
7.	a)	Derive the formula for measuring the effective diameter of thread by 3-wire method.	7M									
	b)	With the aid of neat sketch explain the principle of Tool maker's microscope.	7M									
		OR										
8.	a)	Explain the measurement of gear tooth thickness with aid of neat sketch.	8M									
	b)	What are Coordinate measuring machines (CMM)? Mention their types.	6M									
9.		UNIT-V Explain with suitable sketches about various alignment tests performed on a lathe.	14M									
		OR										
10.	a)	What is overlay coating? How is it produced?	7M									
	b)	What is surface treatment process? Explain briefly.	7M									
