Hall	Tick	et Number :												Г	
Code	e: 50	3563			L							L	1		R-15
	III B.Tech. II Semester Regular & Supplementary Examinations May 2019 Metrology and Surface Engineering														
			Me							-		ring	ļ		
Max	c.M	arks: 70		(ме	cha	nica	I Enç	gine	ering])				Time: 3 Hours
		ver all five uni	ts by	cho	osing	g on		estio *****	n fro	meo	ach i	unit (5 x 14	4 =	
								UNI	[_]]					
1.		Explain Taylo	r's Pi	rincip	le of	Gau	ge Do	•		suita	able e	exam	ple?		
0		- :							OR				• ·		
2.		Find the shaft data:	t and	hole	dim	ensic	ns w	ith to	lerar	ice fo	or a 9	0H86	e9 pai	ır ç	given the following
		90 mm lies in				•			0mm						
		Upper deviati (IT8 = 25i ; IT			haft =	= -11	D^0.	41							
		(110 201,11	0 1	01)						_					
								UNIT]		•			
3.		Distinguish be types of stand			ne s	tanda	ards	and	End	stanc	dards	. Giv	e exa	am	ples of these two
									OR						
4.	a) b)	Describe the				-				-	-		-		
	b)	Explain why t	ne si	ne ba	ar is r	not pi		ed to UNIT	-	erati]	ng ar	igles	great	er	than 45°.
5.		Define the te mechanism o									ry te	xture	e". De	SC	ribe the essentia
			. raij	Joan	mao				OR						
6.								•			•				essive peaks and
		micrometer	a da	atum	line	ove	ra	spec	ified	sam	pling	ienç	jth We	ere	e found to be in
		Peaks: 45, 42	2, 40,	35, 3	35	Valle	eys: 3	80, 25	5, 25,	24, ⁻	18				
		Find CLA and	RM	S?											
							Ī	JNIT	-IV]					
7.		What is CMM	? Exj	plain	the t	ypes	of Cl	MM v	vith n	eat s	ketch	nes.			
									OR						
8.		Explain Parki	nson	Gea	r Tes	ter w	ith ne	eat di	agra	m.					
								UNIT	–v]					
9.		What is Surfac	ce tre	atme	nt Pro	ocess	s? An	d wri	e dov	wn th	eir ch	aract	eristic	s a	and applications.
									OR						
10.		Name the diff	erent	t aligr	nmer	nt tes		be pe	erforn	ned c	on a c	drilling	g mac	hiı	ne.
							ጥ ሻ								

	Παll	TICKEL NUMBER .												
_	Code	e: 5G564			_	_	_	_	_	_			R-15	
		I B.Tech. II Seme										on	s May 2019	
			Α	oplie				-						
	Ma	x. Marks: 70		(Me	chai	nica	l Eng	ginee	ering))			Time: 3 Hours	
		Answer all five uni	ts by ch	noosin	a on	e au	estio	n fro	meo	ach u	nit (5 x	14)
				e of re	-	eratic	on ta				,		,	
						**** UNIT	*****							
1.		In a gas turbine c	vcle, ha	iving p				l I.0, a	ir en	ters t	he comp	res	sor at 1.01 bar	
		and 30°C. The is	•	• •							-			
		respectively. The							-		•			
		of specific heats a and CV of fuel 42.	•					•						4 4 5 4
				, Calci	Jaie	0 0			uieiii			<i>''</i> ''	le cycle.	14M
2.		Draw a schemation	c diagra	m of t	urbo	-		e and	l exp	lain it	s working	g p	rinciple. Briefly	
		discuss the advan	tages a	nd disa	advar	ntage	s of a	a turb	o jet	engir	ie.			14M
						UNIT	-11							
3.		A R-22 vapour o	-		-		-				-	-		
		pressure range of -5°C and leaves						•		•			•	
		compressor, assu										•		14M
		-	-			0	R	-		-			-	
4.	a)	Explain why we	need ai	r conc	litioni	ing ir	n an	aircr	aft. V	With	a neat s	ket	ch explain the	
		working principle of	of an air	craft re	efrige	ratior	n syst	tem.						10M
	b)	Discuss how does	the act	ual air	refrig	geration	on cy	cle d	leviat	e fror	n ideal or	ne.		4M
_					L	JNIT-								
5.		Draw a neat sketc the working fluid a		-		-		-	tion s	syster	n working	g or	$NH_3 - H_2O$ as	14M
					, intering		R							14111
6.		Discuss (with neat	sketch)	the wo	orking	princ	ciple	of a t	hree-	fluid ı	efrigeratio	on	system. What is	
-		the role of the third	fluid (in	ert gas) use	d. Wh	iy this	s syst	em h	as no	t yet been	n cc	mmercialized.	14M
					ι	JNIT-	-IV							
7.		A sample of moist		•		•					•			
		relative humidity temperature, spec							y, ae	egree	or satu	rat	on, dew point	14M
						0								14101
8.	a)	Write a brief note	on class	ificatio	n of a	air co	onditio	oner.						7M
	b)	Differentiate betwe	een RSł	IF and	I GSF	HF. S	how	these	e line	s on a	a psychro	me	tric chart.	7M
					l	UNIT	-V							
9.	a)	With the aid of sim	nple ske	tch, ex	plain	the v	vorki	ng of	any	one t	ype of air	filt	er.	7M
	b)	What is chemical			•		•		•		s on a ps	ycł	nrometric chart.	
		What are the dehu	imidifyir	ig mate	erials			ine p	roces	5S.				7M
10.	a)	Explain the workin	ig of any	one o	of the	O atom		the v	wate	r tvpe	humidifie	er.		7M
	b)	What is a heat pump	• •							• •			f its application.	7M
	- /								•	-				

Hall Ticket Number :

		Ticket Number : R-1	5
C		: 5G562 B.Tech. II Semester Regular & Supplementary Examinations May 2	019
		CAD/CAM	017
		(Mechanical Engineering)	
٨	-	. Marks: 70 Time: 3	
	Α	nswer all five units by choosing one question from each unit (5 x 14 = 70 Marl ********	ks)
		UNIT–I	
1.	a)	Elaborate the significance of product cycle in the conventional manufacturing	
		environment.	7M
	b)	Emphasize the significance of layers in design of parts.	7M
-	,	OR	
2.	a)	Recall various co-ordinate systems used in computer graphics and outline the role of UCS in geometric modeling.	10M
	b)	Identify and summarize the significance of a memory device used in Computer.	10101
	5)	Further, how are these memory devices classified?	4M
		UNIT–II	
3.		Differentiate between C-Rep and B-Rep solid representation schemes with	
		reference to mathematical modeling, storage, applications, and limitations?	14M
		OR	
4.	a)	Summarize briefly about wireframe modeling?	7M
	b)	Derive the Hermite bi-cubic curve equation in wire frame model?	7M
5.	a)	UNIT-III Outline what are NC elements? Explain the features of NC machining center.	7M
5.	,	List the advantages and disadvantages of Numerical control of machine tools.	7M
	0)	Cist the advantages and disadvantages of Numerical control of machine tools.	7 101
6.	a)	Paraphrase a short notes on Computer assisted part programming	4M
0.	a) b)	Identify the role of manual part programming in CNC machines and illustrate the	4101
	0)	significance of G and M Codes in manual part programming?	10M
7.	a)	Briefly explain about OPITZ coding system generally used in GT.	7M
	b)	Interpret the limitations of Group Technology?	7M
		OR	
8.		How are materials handling systems classified? Elaborate the applications of	
		AGVS with its advantages?	14M
9.	2)	UNIT-V	7M
9.	a) b)	Demonstrate at least one contact and non-contact inspection methods used in. Emphasize the advantages of CIM over conventional manufacturing.	7M
	5)		TIVI
0.	a)	Distinguish computer aided inspection and computer aided testing?	7M
	a) b)	Underline the differences between primary and secondary material handling system?	7M
	5)	endennie the amerenees between prindry and secondary material nandling system:	7 111

`												
voae: s	G565				R -2	5						
III B.	Tech. II Semester D	Regular & Sup esign of Mac (Mechanico	hine Elem	ents-II	inations May 2	019						
	Aarks: 70 wer all five units by	choosing one qu	-		Time: 3 t (5 x 14 = 70 Mar							
			UNIT–I									
1. a)	Discuss the types of	bearing failure.				6N						
b)	Design a journal bea	aring for a centrifu	gal pump with	the follow	ving data:							
	Diameter of the jour		oad on bearin	g = 50 kN	l							
	Speed of the journal	l = 900 rpm.				8N						
			OR									
2.	The following data is given for a 360° hydrodynamic bearing: Radial load = 3.2 kN Journal speed = 1500 rpm											
	Radial load = 3.2 kN		•	•								
	Journal diameter = ξ	0	length = 50 m	m								
	Viscosity of lubrican		d in the hearing	n is carried	d by the total oil flow	v						
	Assuming that the total heat generated in the bearing is carried by the total oil flow in the bearing, calculate:											
	(i) Coefficient of friction (ii) Power lost in friction iii) Minimum oil film thickness											
	iv) Flow requiremen	t in litres/min and	v) Temperat	ure rise.		14N						
			UNIT–II									
3.	A single row deep of speed automobile g shown in table.				-							
	The lay shaft is fixe dynamic carrying ca The bearing is expe with which the life co	apacities of the be cted to be use for	earing are 116 4000 hr of op	00 and 17	7600N respectively							
	Gear	Axial load(N)	Radial lo	oad(N)	% time engaged							
	First gear	3250	400	00	1%							
	Second gear	500	275	50	3%							
	Third gear	50	275	50	21%							
	Fourth gear	NIL	NI	_	75%	14N						
		•	OR			_						
	List the advantages		D			4N						

UNIT–III

Select a suitable ball bearing for this application.

bearing is 20000 hours. The minimum acceptable diameter of the shaft is 75 mm.

5. Determine the dimensions of small end and big end bearings of the connecting rod for a diesel engine with the following data:
Cylinder bore = 100 mm Maximum gas pressure = 5 MPa
I/d ratio for piston pin bearing = 2 and (I/d) ratio for crank pin bearing = 1.3.
Allowable bearing pressure for piston pin bearing = 12 MPa
Allowable bearing pressure for crank pin bearing = 7.5 Mpa.

10M

6. Design a cast iron piston for a single-cylinder, four stroke engine, with the following data:

Cylinder bore = 105 mm Stroke = 1.4 X cylinder diameter Maximum gas pressure = 5.2 N/mm^2 Mechanical Efficiency = 80% Indicative mean effective pressure = 0.78 N/mm² Fuel consumption = 0.16 kg per brake power in kW per hour Higher calorific value of fuel = 46300 kJ/kg Speed = 400 rpm Temperature at piston centre = 425°C Temperature at piston edge = 225°C Heat conductivity factor = 46.6 W/m/°C for CI Heat dissipated through top = 5.5% of heat produced Permissible tensile stress for piston = 30 MPa for CI Pressure between rings and piston = 0.04 MPa Permissible tensile stress in rings = 80 MPa Permissible pressure on piston barrel = 0.4 MPa Permissible pressure on piston pin = 18 MPa Permissible tensile stress in piston pin = 90 MPa.

UNIT–IV

- 7. a) A safety valve of 60 mm diameter is to blow off at a pressure of 1.2 N/mm². It is held on its seat by a close coiled helical spring. The maximum lift of the valve is 10 mm. Design a suitable compression spring of spring index 5 and providing an initial compression of 35 mm. The maximum shear stress in the material of the wire is limited to 500 MPa. The modulus of rigidity for the spring material is 80 kN/mm². Calculate: 1. Diameter of the spring wire, 2. Mean coil diameter, 3. Number of active turns, and 4. Pitch of the coil.
 - b) Explain what you understand by A.M. Wahl's factor and state its importance in the design of helical springs?

OR

8. Prove that the ratio of the driving tensions on the two sides of a pulley is

$$\frac{T_1}{T_2} = e^{\mu\theta}$$

Where, T_1 = Tension in the tight side of the belt, T_2 = Tension in the slack side of the belt, μ = Coefficient of friction between the belt and the pulley, and θ = Angle of contact in radians.

- 9. a) What is Pitting and Scoring in gear design.
 - b) A 15 kW and 1200 r.p.m. motor drives a compressor at 300 r.p.m. through a pair of spur gears having 20° stub teeth. The centre to centre distance between the shafts is 400 mm. The motor pinion is made of forged steel having an allowable static stress as 210 MPa, while the gear is made of cast steel having allowable static stress as 140 MPa. Assuming that the drive operates 8 to 10 hours per day under light shock conditions, find from the standpoint of strength,

1. Module; 2. Face width and 3. Number of teeth and pitch circle diameter of each gear. Check the gears thus designed from the consideration of wear. The surface endurance limit may be taken as 700 MPa.

OR

- 10. a) Write the advantages of helical gears over spur gear.
 - b) A pair of helical gears with 30° helix angle is used to transmit 15 kW at 10000 r.p.m. of the pinion. The velocity ratio is 4:1. Both the gears are to be made of hardened steel of static strength 100 N/mm². The gears are 20° stub and the pinion is to have 24 teeth. The face width may be taken as 14 times the module. Find the module and face width from the standpoint of strength and check the gears for wear.

14M

12M

2M

2M

14M

12M

2M

На	ll Tic	ket Number :															
Cod	e: 50	3561	1	I	1	1	1	1	1	1	1	1				R -	15
		ech. II Seme	ster	Reg	julai	r & S	Supr	olen	nent	ary	Exa	min	at	ion	is M	lay 2	2019
		Ir	nstru								-	ems	5				
Mar	~ ~ ~ ~	arks: 70		(Лес	hani	ical	Engi	neel	ing)				Tir	mo. 3	3 Hours
-		ver all five units	s by d	choc	sing	one	que	stior	fron	n ea	ch u	nit (:	5 x	14			
						:	*****	**** NIT–									
1.	a)	Sketch and exp	olain	with	a blo	ck dia				zed r	neas	urem	ner	nt sv	/ster	n and	its
	,	elements with					0	0						,			7M
	b)	How errors are	e clas	sified	l? Ex	plain	how	erro	rs ca	n be	redu	ced.					7M
								OR									
2.	a)	Sketch and exp	plain	Linea	ar Va	riable	e Diff	eren	tial T	ansf	orme	er with	h a	ı nea	at sk	ketch	7M
	b)	Sketch and exp	plain	Phot	o ele	ctric	r										7M
3.	a)	Explain the wo	orking	, prin	cinlo	of N		NIT-				Stat	to i	adv	onto	005.0	nd
5.	a)	disadvantages	-		•			-	6 350	e ya	uye.	Siai		auva	anta	yes a	10M
	b)	Explain workin	g prir	nciple	e of th	herm	ocou	ples.									4M
								OR									
4.	a)	Explain the wo	•		•	•		nermo	omete	ers b	y me	ans c	of r	neat	t ske	etch. L	₋ist 7M
	b)	Explain the fol				•		i) Th	ermo	coup	le ty	pe th	ner	mal	con	ductiv	
		gauge and ii) F		-			-			-		-					7M
_	,																<i>c.</i>
5.	a)	How does a m torque using st							plain	the	princ	iple (oti	mea	asuri	ing sh	aft 7M
	b)	Explain the fun	nction	of a	dum	my g	auge	in a	strair	n gau	ige lo	oad c	ell.	•			7M
								OR									
6.	a)	Explain the co		uctior	n, pri	nciple	e of	work	ing a	nd a	ldvar	ntage	s (of S	Straiı	n gau	ige 7M
	b)	Explain the foll	owing	g i) ⊢	lydra	ulic lo	bad o	cell ii)	Stra	in ga	uge l	oad	cel				7M
								IIT-I									
7.	a)	Explain the two															7M
	b)	Describe the warrangements		• .	•			•	•	•			etc	;h. li	ndic	ate th	eir 7M
		anangemente		cuco			1019	OR	i a oi	ound							
8.	a)	Explain one	meth	od c	of te	mper	ature		npen	satio	n us	sing	ar	a a	djace	ent a	rm
		compensating	gaug	e.													7M
	b)	Explain any tw strain gauge.	io me	ethod	s of	comp	pensa	ating	temp	eratu	ires	for el	lec	trica	al re	sistan	ice 7M
							U	VIT-V	/								
9.	a)	What is closed	loop	syste	m? E	xplai	n the	vario	us el	emer	ts of	it witl	h a	ı blo	ock d	iagrar	m. 10M
	b)	Distinguish bet	weer	n ope	n-loc	op an	d clo	sed I	oop d	contro	ol sys	stem.	•				4M
								OR									
10.	a)	With the help of				•					evel	in a b	boil	er c	contro	olled?	
	b)	What is a serve	o me	chan	ism?	Expl	ain it ***	•	eratio	n.							6M
							* * *	ኮጥ									

-		II Ticket Nur										R-	15	
	-	de: 5G566	C		l 0	C				• • •	 			
	111	B.Iech. II	Semester	-		supp al Ma				mina	tions	s may	2019	
						nical E	-							
٨	M	ax. Marks: 7	-				-	_					8 Hours	;
		Answer all i	five units by	choos	ing on	e ques		om ec	ach un	it (5 x	14 =	70 Mar	ks)	
						UNIT-	4							
. a))	Distinguish c	learly betwee	n Man	ageme	nt and	Organiz	zation					CO1	7
b))	Discuss vario	ous functions	of Mar	ageme	ent.							CO1	7
						OR								
. a))	Describe Fur	nctional orgar	nizatior	. Also	explain	about	its me	rits and	d deme	erits.		CO1	7
b))	Explain abou	ut Taylor's cor	ntributio	on to so	cientific	manag	gemen	it.				CO1	7
						UNIT-	II							
}		Explain clear	rly about vario	ous typ	es of P		on.						CO2	14
						OR					-			
ļ		•	project with red	•				•			ow. Dr	aw the		
			tivity	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8		
		Estimated	Optimistic	3	2	6	2	5	3	3	1	4		
		duration	Most likely	6	5	12	5	1	6	9	4	19		
		(days)	Pessimistic	15	14	30	8	17	15	27	7	28	CO2	14
			r essimistic	15		UNIT-I		17	15	21	'	20	002	14
		Illustrate with	n neat sketch	es vari	L			ssocia	ated in	condu	ctina I	Vethod		
		study.									surg .		CO3	14
						OR								
. a))	-	lain different t				Explain	the s	teps in	volved	in arr	iving at		
			e, starting wit								-		CO3	7
b))	•	manufactures	-								•		
		-	in and produc	•					ie stan			setting	CO3	7
			-			UNIT–I	V							
	、	Explain abou		~ ·										
. a))		it the following	y.									CO4	7
. a))	(i) Stores ma		-	ores ree	cords							004	'
. a) b)	,			(ii) Sto			echniq	ues.					CO4	
b))	Discuss abo	anagement ut various inve	(ii) Sto entory	classifi	cation t OR	echniq	ues.					CO4	7
b))	Discuss abou	anagement ut various invo ut control char	(ii) Sto entory t for va	classifi ariables	cation t OR							CO4 CO4	7 7
b))	Discuss abou	anagement ut various inve	(ii) Sto entory t for va	classifi ariables	cation t OR .h suital	ble exa						CO4	7
b) . a) b))	Discuss abou Explain abou Describe var	anagement ut various inve ut control char rious types of	(ii) Sto entory t for va Inspec	classifi ariables tion wit	cation t OR :. :h suital UNIT-'	ble exa	mple.					CO4 CO4 CO4	7 7 7
b) . a))	Discuss abou Explain abou Describe var	anagement ut various invo ut control char	(ii) Sto entory t for va Inspec	classifi ariables tion wit	cation t OR :. :h suital UNIT–' Human	ble exa	mple.		nent.			CO4 CO4	7 7 7
b) . a) b)))))	Discuss about Explain about Describe var Discuss in de	anagement ut various inve ut control char ious types of etail about the	(ii) Sto entory t for va Inspec	classifi ariables tion wit	cation t OR h suital UNIT- Human OR	ble exa V Resou	mple.		nent.			CO4 CO4 CO4 CO5	7 7 7 14
b) . a) b)))))	Discuss about Explain about Describe var Discuss in de Distinguish b	anagement ut various inve ut control char rious types of	(ii) Sto entory t for va Inspec functi evaluat	classifi ariables tion wit ons of ion and	cation t OR h suital UNIT- Human OR	ble exa V Resou	mple.		nent.			CO4 CO4 CO4	7 7 7 7 14 7 7