Code: 5G364

III B.Tech. Il Semester Regular \& Supplementary Examinations May 2019

Digital Signal Processing

(Electronics and Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Examine the following systems for linearity, time-invariance and stability
(i) $\mathrm{y}(\mathrm{n})+\mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-2)$
(ii) $\quad \mathrm{y}(\mathrm{n})=\mathrm{a}^{\{\times(\mathrm{n})\}}$
b) A discrete time system is represented by the following equation
$y(n)=(3 / 2) y(n-1)-(1 / 2) y(n-2)+x(n)$ with initial conditions $y(-1)=0, y(-2)=-2$ and $x(n)$ $=(1 / 4)^{n} u(n)$.
Determine the total response of the system.

OR

2. a) State and prove the following DFS properties
(i) Linearity
(ii) Time shifting
(iii) Symmetry (iv) Periodic Convolution 8M
b) If the $\operatorname{DFT}\{x(n)\}=X(k)=\{4,-j 2,0, j 2\}$, using properties of DFT, find DFT of $x(n-2)$.

UNIT-II

3. a) Compare DIT and DIF algorithms.
b) Develop the necessary three stage computation equations for radix-2 DIT FFT method.

OR

4. a) Find the DFT of the sequence $x(n)=\{2,1,2,1,2,1,2,1$,$\} using radix-2 DIF-FFT algorithm.$
b) Find the IDFT of the sequence

$$
X(k)=\{10,-2+j 2,-2,-2-j 2\} \text { using DIT algorithm. }
$$

UNIT-III
5. a) For the given specifications design an analog Butterworth filter.

$$
\begin{aligned}
0.9 \leq & |H(j \Omega)| \leq 1 \quad \text { for } 0 \leq \Omega \leq 0.2 \pi . \\
& |H(j \Omega)| \leq 0.2 \text { for } 0.4 \pi \leq \Omega \leq \pi .
\end{aligned}
$$

b) Determine the transposed direct form-II for the given system

$$
y(n)=1 / 2 y(n-1)-1 / 4 y(n-2)+x(n)+x(n-1)
$$

OR
6. a) Explain FIR filter design procedure using windowing method.
b) Design a digital FIR low pass filter using rectangular window by taking 9 samples of $w(n)$ and with a cutoff frequency of $1.2 \mathrm{rad} / \mathrm{sec}$.

UNIT-IV

7. a) (i) Describe the Decimation process by a factor D
(ii) Describe the interpolation process by a factor I
b) Discuss about sampling conversion by a rational factor I/D. Obtain necessary equations. 7M

OR
8. Discuss various filter design methods and implementations for sampling rate conversion. 14 M

UNIT-V

9. What are the applications of DSP? Explain any one application clearly.

OR
10. a) Explain the process of signal compression and decompression
b) Discuss about oversampling of D/A Converter

R-15

Code: 5G361

III B.Tech. II Semester Regular \& Supplementary Examinations May 2019 VLSI Design

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the MOS Transistor operation with the help of neat sketches in the Depletion mode.
b) Derive the expression for the threshold voltage of MOSFET

OR
2. a) With neat sketches explain the lon-lithography process.
b) Derive the relation between $\mathrm{I}_{\mathrm{DS}} \& \mathrm{~V}_{\mathrm{DS}}$ of MOSFET.

UNIT-II

3. a) Implement the logic functions using CMOS logic $Y=(A B+C D)^{1}$
b) Write stick diagram for p-well CMOS inverter

OR
4. a) Explain different forms of pull ups used as load, in CMOS and in enhancement \&
depletion modes of NMOS
b) For nMOS Inverter driven by another nMOS Inverter, derive the expression for $Z_{p u} / Z_{p d}$ ratio.

UNIT-III

5. a) Explain with suitable examples how to design the layout of a gate to maximize performance and minimize area

$$
\begin{aligned}
& \text { b) What are the alternate gate circuits available? Explain any one of item with } \\
& \text { suitable sketch by taking NAND gate as an example. }
\end{aligned}
$$

OR

6. a) Explain different wiring capacitances used in Gate level design with example
b) Calculate the rise time and fall time of the CMOS inverter $(W / L)_{n}=6$ and $(\mathrm{W} / \mathrm{L})_{\mathrm{p}}=8 . \mathrm{k}_{\mathrm{a}}=150 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{m}}=0.7 \mathrm{~V}, \mathrm{k}_{\mathrm{p}}=62 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tp}}=-0.85 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. Total output capacitance $=150 \mathrm{pF}$.

UNIT-IV

7. a) Explain about parity generator with neat diagram 7M
b) With the help of a block diagram explain the principle and operation of standard cells.

OR

8. a) Compare PLAs, PALs, CPLDs, FPGAs, and standard cells in all respects 8M
b) What are the circuit design considerations in the case of static adder circuits 6M

UNIT-V

9. a) How layout design can be done for improving testability? Explain.
b) Explain about chip level test techniques?
10. a) What do you mean by synthesis? Explain the circuit synthesis design methods.
b) What are the issues to be considered while implementing BIST? Explain.

Code: 5G366

III B.Tech. II Semester Regular \& Supplementary Examinations May 2019

Radar Engineering

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Obtain the radar equation in terms of minimum detectable power and gains of transmitting and receiving antenna.
b) Compute the maximum detectable range of a radar system specified below:

Operating wavelength $=3.2 \mathrm{~cm}$, Peak pulse transmitted power $=500 \mathrm{~kW}$., Minimum detectable power $=10^{-3} \mathrm{~W}$, Capture area of the antenna $=5 \mathrm{sq} . \mathrm{m}$., Radar cross-sectional area of the targe $\mathrm{t}=20$ sq.m.

OR
2. a) Discuss about the integration of radar pulses in detail.
b) List major applications of radar in civil and military systems 7M

UNIT-II

3. a) What is Doppler frequency shift? Establish a relation between Doppler frequency shift and radial velocity of a moving target.
b) List the limitations of CW radar. 6 M

OR
4. a) With a neat block diagram, explain the operation FM-CW Altimeter.
b) Explain how isolation between transmitter and receiver of a radar system can be achieved if single antenna is used for transmission and reception.

UNIT-III

5. a) With the aid of a block diagram, explain fully the operation of an MTI system using a power amplifier in the transmitter.
b) Discuss the factors limiting the performance of an MTI system.

OR

6. a) Calculate the lowest blind speed of an MTI system operating at 3.6 cm wavelength and transmitting at a pulse repetition time of $330 \mu \mathrm{sec}$
b) Write the description of Range gate Doppler filters.

UNIT-IV

7. a) With the help of a suitable block diagram, Sequential lobing type of tracking technique in a tracking radar system.
b) Describe automatic tracking of a target through range gating technique.

OR
8. a) Draw and explain the following with respect to Tracking in range:
i. Echo pulse
ii. Early-late range gates
iii. Difference signal between early and late range gates
8M
b) Compare the different trackers.

UNIT-V

9. a) Derive the frequency response characteristics of matched filter receiver.

b) Discuss the relation between the matched filter characteristics and correlation
detection.

OR
10. a) Differentiate branch-type duplexers and balanced duplexers.
b) Explain the functioning and characteristics of PPI display and A-Scope.
\square

Code: 5G362

R-15

III B.Tech. II Semester Regular \& Supplementary Examinations May 2019
 Microwave Engineering
 (Electronics \& Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define Cut-off frequency and dominant mode in a rectangular waveguide with expression.
b) Why TEM Mode cannot exist in a rectangular waveguide.

OR
2. a) What do you mean by Group and Phase velocity in a waveguide and relate them.
b) Compare between different Microwave transmission lines and their modes of propagation.
\square
3. a) Compare Rectangular and circular waveguide.
b) Explain Cavity resonator in detail.
4. a) $\mathrm{A} T E_{11}$ mode is propagating through circular waveguide. The diameter of guide is 10 cm and the guide is air filled. Determine Cut off frequency, Wavelength for 3 GHz frequency and wave impedance in the guide.
b) Explain power losses in a waveguide transmission media with expression in various propagating modes.
UNIT-III
5. a) What is a Directional Coupler and its coupling factor and directivity?
b) What is the principle of working underlying any microwave attenuator?

OR
6. a) A waveguide load has a VSWR of 1.1 and is used to absorb an average power of 5 W . Find the Reflected power and return loss in microwave network.
b) Derive S Matrix of a Magic Tee.

UNIT-IV

7. a) Describe the two cavity klystron amplification with the aid of schematic diagram.
b) Obtain expression for round trip transit angle in reflex klystron.

OR

8. a) Compare between Linear and cross field microwave amplifiers. 6M
b) Explain Oscillation mechanism in a Magnetron.

UNIT-V

9. a) What is IMPATT diode and draw its schematic diagram with equivalent circuit.
b) Draw the band diagram of Ga As and explain the Gunn effect, whereby negative resistance and therefore oscillations are obtainable under certain conditions from bulk gallium arsenide.

OR

10. a) What do you mean by Parametric Amplifier and operation with applications in communication system?
b) Explain Microwave Test Bench with its all components and their features.

Code: 5G363

III B.Tech. II Semester Regular \& Supplementary Examinations May 2019
Microprocessors and Interfacing
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I 9M
b) What is addressing mode? Explain the following addressing modes of 8086 with suitable examples: (i) Register addressing, (ii) Based indexed addressing, (iii) Indirect addressing, (iv) Immediate addressing

OR
2. a) Differentiate between procedure and Macros
b) Describe the significance of following pins of 8086
(i) $A L E$, (ii) $R E S E T$, (iii) $\overline{T E} \bar{S} \bar{T}$, (iv) $M / \bar{I} \bar{O}$

UNIT-II
3. a) Write a program to interface stepper motor to 8086
b) Interface ADC 0800 with 8086 using 8255 ports. Use port A of 8255 for transferring digital data output of ADC to the CPU and port C for control signals. Assume that an output is present at I/P2 of the ADC and a clock input of suitable frequency is available for ADC. Draw the schematic and write the required ALP.
4. a) Interface an 8255 with 8086 at 80 H as an I/O address of port A. Interface five 7 segment displays with the 8255 . Write a sequence of instructions to display $1,2,3,4$, and 5 over the five displays continuously as per their positions starting with 1 at the least significant position.
b) Discuss the transfer modes of 8237

UNIT-III

5. a) Distinguish between programmed I/O and interrupt driven I/O.
b) What are the sequence of action taken by 8086 and the device, when a device interrupts 8086 over INTR line? Explain about the software and reserved internal interrupts of 8086 .

OR

6. a) Explain the modes of operation of 8253 PIT with necessary diagram
b) Demonstrate the initialization command words of 8259A PIC

UNIT-IV

7. a) Design a hardware interfacing circuit for interfacing 8251 with 8086 . Set the 8251 A in asynchronous mode as a transmitter and receiver with even parity enabled, 2 stop bits, 8-bit character length, frequency 160 kHz and baud rate 10 K . Write an ALP to transmit 100 bytes of data string starting at location 2000:5000H
b) From the above data in Q. 7 (a), Write an ALP to receive 100 bytes of data string and store it at 3000:4000 H.

OR
8. a) Draw the architectural block diagram of 8251 A and explain the function of each block
b) What is current loop? Explain how 20 mA current loop is used to provide serial data communication between 8086 and a peripheral.

UNIT-V

9. List the salient features of Pentium and Pentium pro processors
10. Draw and explain architecture of 80286 processor.

III B.Tech. II Semester Regular \& Supplementary Examinations May 2019

Electronic Measurements and Instrumentation

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) What are errors? Define the following errors with examples
(i) Instrumental Errors
(ii) Gross Errors
(iii) Calibration Error
6M
b) Define the following
(i) Accuracy
(ii) Precision
(iii) Sensitivity
(iv) Resolution
8M

OR
2. a) Explain the construction and operation of series type ohmmeter. 7 M
b) A basic d'Arsonval movement with an internal resistance $R_{m}=100 \Omega$ and full
scale deflection current $I_{\text {fsd }}=1 \mathrm{~mA}$ is to be converted in to a multirange DC
voltmeter with voltage ranges $0-10 \mathrm{~V}, 0-50 \mathrm{~V}, 0-250 \mathrm{~V}$ and $0-500 \mathrm{~V}$.
Calculate the resistance values required to achieve corresponding ranges. 7 M

UNIT-II
3. a) Draw the block schematic of AF Wave analyzer and explain its principle and Working?

7M
b) Explain the working of the harmonic distortion analyzer. 7 M

OR

4. a) Explain the working of heterodyne wave analyzer with neat diagram. 6M
b) Discuss in detail about frequency selective wave analyzer with a neat sketch. 8M

UNIT-III
5. a) With a neat block diagram, Explain the Cathode Ray Oscilloscope. 8M
b) Draw the block diagram of Sampling oscilloscope and explain its working. 6M

OR
6. a) With neat block diagram, explain the analog storage oscilloscope. 7M
b) Explain the working of Dual trace CRO with neat block diagram. 7M

UNIT-IV
7. a) Explain the working of Wheatstone bridge and derive the equation for balance
condition and unbalance condition.
b) An unbalanced Wheatstone bridge is supplied with a 8 V DC and the
resistances are $7 \mathrm{~K} \Omega, 2 \mathrm{~K} \Omega, 4 \mathrm{~K} \Omega$ and $20 \mathrm{~K} \Omega$ in the clockwise direction starting
from the junction of resistors connected to positive terminal of the DC
supply. If the galvanometer has an internal resistance of 200Ω, calculate the
current through the meter.

OR
8. a) Draw the circuit of Maxwell's bridge and derive its balance equation? 8 M
b) The four arms of a Maxwell's bridge are:
Arm AB - unknown inductance L_{x} with inherent resistance R_{x},

Arm BC - a non-inductive resistance of 1000Ω,
Arm CD - a capacitor of $0.5 \mu \mathrm{~F}$ in parallel with a resistance of 1000Ω
Arm DA - resistance of 1000Ω
Derive the equations for balance and determine the values of R_{x} and L_{x}. $6 M$
UNIT-V
9. a) What is Displacement? How LVDT can be used for measurement of displacement. 7M
b) Explain how temperature is measured using RTD. 7 M

OR
10. a) Explain general Data Acquisition System (DAS) with a neat block diagram. 7M
b) What are recorders? With necessary diagrams explain the functionality of $X-Y$ recorder. 7 M

