
	Ha	all Ticket Number :												[
	Code: 7G16D													F	R-17		
		III B.Tech. I	l Ser	nes	ter F	Regu	Jlar	Exa	mino	atio	ns N	ov/	Dec	2020			
						-		gran									
				(Cor	nmc	on to	d EEE	& E	CE)				- .	<u> </u>		
	MC	ax. Marks: 70 Answer an	v five	- au	estio	ns fra	om tl	he fo	llowi	na (5 x 1	4 = 7	'0 Ma		: 3 Hc	Urs	
			<i>y</i>	90	05110	;	*****	****		91	0 / 1	. ,	0 1110				
														Marks	со	Bloo Lev	
1.	a)	Define OOP and w	hat a	are t	he m	nerits	and	d den	nerits	of	objec	t ori	ented				
		methodology?												7M	CO1		L1
	b)	Define recursion and w	vrite a	a C++	prog	ram fo	or find	ding fa	actoria	al of a	give	n num	nber.	7M	CO1		L1
~	-)	Define dete trans en d	1	- ' (I	!!		1 -1 - 1	- 6		• • •							
Ζ.	a) b)	Define data type and Define destructor and	•					•••				tor		7M 7M	CO1		L1 L3
	b)	Denne destructor and		.e a C	ν++ μ	nogra		nubi	emer	n de:	Siruc			7 111	CO1		LS
3.	a)	What is meant by ov	erloa	ding	? Exp	olain	abou	ut fun	ction	over	loadi	ng w	ith an				
		example.												7M	CO2		L2
	b)	Define inheritance and	d exp	lain a	about	multi	ple ir	herita	ance	with a	an ex	ample	Э.	7M	CO2		L3
4.	a)	What is friend functio functions.	on an	d wh	at are	e the	meri	ts and	d den	nerits	s of u	sing	friend	7M	CO2		L2
	b)	Explain about virtual	hase	, clas	s wit	h suit	ahle	nroa	ram					7M	CO2		L2 L3
	5)		5430	, 0143	S WIL	i Suit	abic	prog	am.					7 101	002		LU
5.	a)	Define a class? Wh	at is	the	gene	eral f	orm	of a	class	s? H	ow o	bject	s are				
		declared explain with		•										7M	CO3		L3
	b)	Write a java program	for c	check	king A	rmst	rong	num	ber.					7M	CO3		L2
~	-)			-		1		1 ⁻			•						
6.	a) Þ	What are the differen			•		0)?			7M	CO4		L2
	b)	Discuss the adding c	lass	to a p	раска	age w	htn a	in exa	impie					7M	CO4		L2
7.	a)	What is multithreadin	na an	d wh	at are	e the	adva	antag	es of	multi	ithrea	adina	2	7M	CO4		L3
	b)	How to create multipl	•					•				a dini g		7M	CO4		L2
	- /	·····							1-10								_
8.	a)	Define applet and ex	plain	the I	ife cy	cle o	fan	apple	et.					7M	CO4		L2
	b)	What are application	s and	d use	s of a	an ap	plet?	>						7M	CO4		L2
							***	**									

		Il Ticket Number :			<u> </u>								R	2-17		
	Loa	III B.Tech. II Sem	ester	Rec	nula	r Fx	amiı	nati	ons	Νον	//D	ec 2	2020			
		Power			-							002				
			trical o		-											
	Μ	ax. Marks: 70 Answer any five	auestic	nne f	rom	that	Follow	vina	15 -	11-	- 70	Marl		e: 3 Ho	ours	
			quesne			*****		ving	() /		- 70	man	(3)			
														Marks	СО	Blooms Level
1.	a)	What is an incremental fuel	cost? D	raw	incre	emen	tal fu	el co	st cu	rve.	How	is it i	used			
		in thermal plant operation?												6M	CO1	I
	b)	150 MW, 220 MW, and 220				0										
		power station. Their respe	ective ir	ncrei	ment	al co	osts a	are ç	given	by	the	follo	wing			
		equations: $dC_1/dP_1 = Rs.(0.11P_1+12);$		D	Dc (1	1 1 D.	±13)									
		$dC_1/dP_1 = Rs.(0.095P_2+14)$ $dC_2/dP_2 = Rs.(0.095P_2+14)$		3 —	1.5.(1	J. IF 3	5+13)	,								
		Where P_1 , P_2 and P_3 are the		n M\	<i>Ν</i> . Εν	valua	te the	eco	nom	ical I	oad	alloca	ation			
		between the three units, wh														
		(i) 350 MW (ii) 500 MW.												8M	CO1	V
2.	a)	Give algorithm for econon	nic allo	catio	on of	gen	eratio	on ai	mong	g ge	nera	tors	of a			
		thermal system taking in									/e :	steps	for			
		implementing this algorithm					-	-						7M	CO1	II
	b)	A power system consists		10	0 M\	N ur	nits v	vhose	e inp	out c	ost	data	are			
		represented by equations b $C_1 = 0.04P_1^2 + 22P_1 + 800 \text{ Rs/h}$														
		$C_1 = 0.04F_1 + 22F_1 + 000 \text{ Rs/r}$ $C_2 = 0.045P_2^2 + 15P_2 + 1000 \text{ R}$														
		If total received power $P_R=1$. Th	en D	etern	nine									
		(i) The load sharing betwee						oper	ation							
		(ii) The corresponding cost						•						7M	CO1	VI
3.	a)	In a two plant operation syst	em, the	hyd	lro pl	ant is	sope	rated	for 1	2 hrs	s, du	iring e	each			
		day and the steam plant is	•	ate a	all ov	er th	e day	/. Th	e ch	aract	erist	tics o	f the			
		steam and hydro plants are														
		CT=0.3PGT ² +20PGT+5 Rs WH=0.4 PGH ² +20PGH m ³ /														
		When both plants are runni		now	/er o	wned	l from) ste	am n	lant [.]	to lo	ad is	300			
		MW and the total quantity of	•	•					•							
		hrs is 180x10 ⁶ m ³ . Evaluate	the ger	nera	tion o	of hyd	dro pl	ant a	ind c	ost c	of wa	ter u	sed.	8M	CO2	V
	b)	What is mean by unit com	mitmen	t pro	oblen	n? D	iscus	saı	meth	od fo	or so	olving	the			
		same.												6M	CO2	II
4.	a)	Obtain the transfer function	and blo	ck d	iagra	m re	prese	ntati	on of	Firs	t ord	ler tur	bine			
		model.												7M	CO3	II
	b)	Draw the schematic diagr		•		•		•••			d ex	cplain	the	714		
5	c)	functioning of its componen								uei.				7M 7M	CO3	
5.	a) b)	Explain how excitation will a		•		•						or d	roop	7M	CO3	111
	b)	Two turbo alternators rate characteristics of 8% from								•			•			
		share a load of 20 MW. De					-									
		free governor action.						•					C	7M	CO3	IV
6.	a)	What is the importance of t	ie-line b	oias	contr	ol? V	Vhen	can	we s	ay th	nat t	he tie	; line			
		is weak or strong?												7M	CO4	II
	b)	Explain the Load Frequency	/ Contro	ol an	d Ec	onon	nic di	spato	h co	ntrol				7M	CO4	II
7.	a)	Derive the relation between		•					•					7M	CO5	II
~	b)	Explain the effect of shunt of	•							•				7M	CO5	II
8.	a)	Explain the reasons for varia		volta	ages	in po	wer s	yster	ns a	nd ex	plai	n any	one	714	007	
	۲	method to improve voltage		200	K/M	at 0 -	7 n f	lo~~!	na 14	ام ما		d to 1	brin~	7M	CO5	
	u)	A 440V, 50 Hz, 3-Ø supply of the line p.f. to 0.9 by installi					•	•••	•				•			
		are (i) Star connected and (-		-		2 3100			pu	2			7M	CO5	IV

	Hall	Ticket Number :													
С	ode	e: 7G264		. <u></u>	·							F	R-17		
		III B.Tech.	II Seme	ester F	egulo	ar Ex	ami	natio	ons	Nov	/Dec	2020)		
				Powe	er Sys	tem	An	alys	is						
			(Elect	rical a	nd Ele	ectro	nics	Engi	neer	ring)					
	Mo	ax. Marks: 70											ne:3⊦	lours	5
		Answer ar	ny five c	Juestio	ns from	n the *****	follo\ *	wing	(5 x	14 =	70 M	arks)			
													Marks	со	Blooms Level
1.	a)	What is fundamental	l cut-seť	? Expla	in with	an ex	ampl	e.					6M		
	b)	Starting from Zbus for	or a parti	al netw	ork des	scribe	step	by st	ep ho	ow yo	u will	obtain			
		the Zbus for a modif	fied netw	ork wh	en a n	ew lin	ne is t	o be	adde	ed to	a bus	in the			
		existing network											8M		
2.	a)	Derive the expression			nce mat	trix Y _B	sus in t	erms	of pri	imitive	e adm	ittance			
		matrix and bus incide	nce matr	ix.									7M		
	b)	Explain the procedur	e to moo	dify the	Z _{Bus} wh	en ar	n elem	nent i	s add	led to	the e	xisting			
		network.											7M		
3.		A 3-Bus Power syst indicated on the diag voltages at buses 2 a	gram and	d the bu	us data	are a	as foll	ows t	able	1. De	etermi	ne the			

=1.6.

Table1. B	us Data
-----------	---------

Bus	Туре	Gene	ration	Lo	bad	Bus Voltage			
No		e Pg	0	PL	QL	27			
1	Slack Bus	-	-	-	-	1.02	05		
2	PQ Bus	0.25	0.15	0.5	0.25	-	-		
3	PQ Bus	0	0	0.6	0.3	-	-		

14M

7M

7M

7M

- 4. a) Explain the fast decoupled load flow method and write the algorithm
 - b) What are the three classes of buses of a power system used in power flow analysis? What are the quantities to be specified and to be computed for each class during power flow solution?
- 5. a) Derive the expression for sequence components of fault currents for L-L-G fault at the terminals of an unloaded generator. How the sequence networks are connected to represent the fault?
 - b) A single phase resistive load of 100 kVA is connected across lines of BC of a balanced supply of 3 kV. Compute the symmetrical component of line currents.
 7M

6.	a)	Prove that X= 3 R the maximum power is received in a power system through series impedance $Z = R + j X$.	6M
	b)	Two turbo generators with rating given below are connected via a short line M/c 1 : 4 pole, 50 Hz, 60 MW 0.8 pf lag and moment of inertia 30,000kg-m ²	
		M/c 2 : 2 pole, 50 Hz, 80 MW 0.85 pf lag and moment of inertia 10,000kg-m ² . Calculate the inertia constant of single equivalent machine on base of 200 MVA.	8M
7.	a)	Derive the expression for Inertia Constant from fundamentals.	6M
	b)	Find the steady state stability limit of a power system consisting of a generator of direct axis reactance of 0.6 pu connected to an infinite bus through a series reactance of 1.0 pu. The terminal voltage of the machine is held constant at 1.1	
		pu. And the voltage of the infinite bus 1.0 pu.	8M
8.	a)	Derive the swing equation of single machine connected to infinite bus and also write the assumptions to derive it.	6M

- b) A balanced 3-phase fault occurs at middle poir of line 2 where the power is 1.5 pu in the system of Figure. E=1.2, V=1, $\frac{11}{Xd} = 0.2$, $\frac{1}{X1} = \frac{1}{X2} = 0.4$ er transformed put.
 - i. Determine whether the system is stable for a sustained fault
 - ii. The fault is cleared at $=60^{\circ}$. Is the system stable? If so, find the maximum rotor swing
 - iii. Find the critical clearing angle

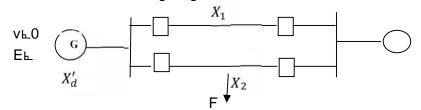


Figure A machine connected to an infinite bus through an inter-connector *****

8M

	Hall	Ticket Number :]				-
6	`ode	e: 7G263		J											R-17		
	.0ue	III B.Tech.	ll Se	eme	ster	Rec	aulai	r Exc	amir	natio	ons I	Nov	/Dec	2020)		_
						-			Pro				,		-		
			(El€	ectri	cal	and	Elec	tron	ics E	ngir	ieeri	ing)					
	Мах	. Marks: 70			1.	f		LI E	- 11			14	70.14-		ne: 3 H	ours	
		Answer a	ny tiv	/e qu	Jestic	ons ti		INE T *****	Oliow	/ing	(5X	14 =	70 MC	irks)			
															Marks	со	Blooms Level
1.	a)	What is the role					in su	bstat	ions	? Exp	olain	the			7M	1	1&1
	b)	specifications of In a system of 1					arou	nd c	anac	itanc	منو	0 03	uE an	d tha		I	IœII
	0)	inductance is 7					•		•				•				
		Circuit Breaker. I						•	•	•			•				
		interrupted, dete							stand	ce to	be	used	acros	s the			
		contacts to elimir	nate t	the re	estrik	ing v	oltag	je.							7M	4	V
2.	a)	Explain the terms	reco	overy	volt	age,	restri	iking	volta	ige a	nd F	RRV	. Deriv	/e an			II &
	<i></i> ,	expression for rest	riking	volta	age ir	n term	ns of s	syste	m cap	bacita	nce	and i	nductar	nce	7M	4	VI
	b)	Explain about the	work	ting c	of vac	uum	circu	iit bre	eaker	s and	d List	its a	dvanta	ges.	7M	1	&
			_							_							
3.	a)	Explain the oper diagram.	ation	of	direc	tiona	l ove	er cu	rrent	rela	y wi	th a	neat c	ircuit	7M	2	II
	b)	Explain the Impe	danc	e rel	ay by	/ me	ans c	of its	char	acter	istic	on R	-X pla	ne.	7M	2	II
	,												•				
4.	a)	Explain the operation	ation	of B	uchh	oltz r	elay	with	a ne	at dia	agrai	n.			7M	2	II
	b)	A 3-phase trans															
		the protecting cu 400/5. Determine								•							
		also draw the circ					unoi	it tia	10101	mor			IV Slac		7M	4	V
				•													
5.	a)	What are the main of generators again					in ge	enera	tors?	, Exb	lain	the p	protecti	on	7M	3	&
	b)	The neutral point					ator	is ea	rtheo	d thre	ough	are	esistan	ce of		Ū	
	,	12 , the relay is									-						
		A. The C.T.s has							•		•			•			
		is protected agai resistance require											of ear	thing	7M	4	VI
		resistance require		give	: 90 /	0 UI L	JUIE	SUOT	10 60	acrip	11230	5!			7 111	4	VI
6.	a)	Explain about Zir	IC-OX	ide li	ghtir	ıg arı	resto	r.							7M	3	&
	b)	Discuss the prote	ectior	n of a	n para	allel f	eede	er.							7M	2	VI
			_														
7.	a)	Explain 3-zone d													7M	3	
	b)	Explain with diagra	am the	e higł	n imp	edan	ce bu	is bar	diffe	rentia	al pro	tectio	on sche	me.	7M	3	II
8.	a)	Discuss the pher	ome	na o	f a lio	ghtnii	ng st	roke.							7M	2	VI
2.	⊆, b)	Explain the worki					-			r.					7M	2	II
	,		5			3		0									-

	Hall	Ticket Number :			1
	Cod	e: 7G265	R-1	7	
		III B.Tech. II Semester Regular Examinations Nov/Dec 202	20		
		Utilization of Electrical Energy			
		(Electrical and Electronics Engineering)			
	Ma	x. Marks: 70 Answer any five questions from the following (5 x 14 = 70 Marks) ********	me: 3	Hours	
			Marks	со	Blooms Level
1.	a)	Explain the classification of Electric drives. List their limitations.	7M	CO1	2
	b)	A 220V DC shunt motor has armature and shunt field resistances of 0.05 ohms and 220 ohms respectively. Motor draws a full load current of 21A running at 1000 rpm. What resistance must be included in the field such that the motor runs at 1500 rpm for the same torque?	7M	CO1	4
2.	a)	What are the characteristics of heating element? Explain the design of			
		heating element is resistance heating.	10M	CO2	2
	b)	Discuss various methods of controlling the temperature in Dielectric heating.	4M	CO2	1
3.	a)	Name and describe various resistance welding process	7M	CO2	1
	b)	List different welding electrodes and explain in detail.	7M	CO2	2
4.	a)	State and explain Laws of Illumination	7M	CO3	2
	b)	Discover the differences between tungsten filament lamps and fluorescent tubes	7M	CO3	3
5.	a)	Explain the working of sodium vapor lamp	7M	CO3	2
	b)	Explain why now a days the LED lamps are preferred over other forms of			
		lamps by the governments. Give the comparison with respect life, cost and maintenance.	7M	CO3	4
6.	a)	Discuss about system of track electrification.	7M	CO4	2
	b)	Examine advantages of electric traction in detail.	7M	CO4	4
7.	a)	Define Specific Energy Consumption and discuss the factors which affect specific energy consumption of trains operating at a given scheduled speed	714	CO4	2
	b)	A train runs at an average speed of 50 kmph between stations situated 25	7M	CO4	2
	5)	km apart. Traction accelerates at 2 kmphps and retardation at 3 kmphps.			
		Find its maximum speed assuming simplified trapezoidal speed time curve	7M	CO4	3
8.	a)	Explain socio & environmental importance of hybrid electric vehicles.	7M	CO5	2
	b)	Describe the importance of modern drive trains.	7M	CO5	1

	F	lall Ticket Number :			
	\mathbf{C}	de: 7G262	R-1	7	
	CU	III B.Tech. II Semester Regular Examinations Nov/Dec 202	20		
		Microprocessors and Microcontrollers			
		(Electrical and Electronics Engineering)			
	IVI	Ti Answer any five questions from the following (5 x 14 = 70 Marks)	ime: 3)	HOU	115
		******			Plaama
	、		Marks	СО	Blooms Level
1.	a)	Explain the following instruction set of 8086 microprocessor with examples:(i) Data Transfer Instructions (ii) String Instructions (iii) Processor Control Instructions (iv) Iteration Control Instructions.	8M	1	2
	b)	Write an assembly language program in 8086 to multiply a 16-bit unsigned number by an 8-bit unsigned number.	6M	1	3
2.	a)	Explain any four types of addressing modes of 8086 microprocessor with examples.	7M	1	5
	b)	Explain about the special and general purpose registers organization in 8086 processor in detail.	7M	1	2
3.	a)	Draw the block diagram of 8259 and explain each block.	8M	2	6
	b)	Explain the need of DMA. Discuss in detail about DMA data transfer method.	6M	2	2
4.	a)	Draw the block diagram of 8257 and explain about each block.	8M	2	6
	b)	Explain the interrupt response sequence of 8086 with the help of a block diagram. Also explain the purpose of 8086 interrupt vector table.	6M	3	2
5.	a)	Draw an internal architecture of USART 8251 and explain its different status and modes and control formats neatly.	8M	4	6
	b)	Draw the logic diagram to convert TTL to RS232C conversion and explain the operation.	6M	4	5
6.	a)	Draw the pin diagram of 8051 microcontroller and describe about each pin in			
		detail.	7M	5	6
	c)	Write a program to find 8-bit subtraction using 8051 microcontroller.	7M	5	3
7.	a)	Explain various addressing modes supported by 8051 microcontroller.	4M	5	5
	b)	Explain the function of the timers in 8051 microcontroller	6M	5	5
	c)	Write a program to add 16 bit numbers using 8051 microcontroller.	4M	5	3
8.	a)	Draw the diagram of ARM architecture and explain the function of each block			
		along with different features in it.	7M	5	5
	b)	Explain the features in available ARDUINO microcontroller.	7M	5	5