ode: 7G364						.II	R-17	
Hall Ticket Number :								_

III B.Tech. II Semester Regular & Supplementary Examinations July/Aug 2021

Digital Signal Processing

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Check whether the following system is linear and time invariant.			
		$y(n) = n[x(n)]^2$	6M		
	b)	State and prove Time shift and Convolution properties of DFT.	8M		
		OR			
2.	a)	Compute the response of the system			
		y(n) = 0.7y(n-1)-0.12y(n-2)+x(n-1)+x(n-2) to the input $x(n) = nu(n)$.	7M		
	b)	Find the inverse DFT of $X(K) = \{1,2,3,4\}$	7M		
		UNIT-II			
3.	a)	Compute the FFT for the sequence $x(n) = n^2+1$ where N=8 using DIT algorithm.	7M		
	b)	Discuss the computation efficiency of radix-2 FFT algorithm over direct DFT.	7M		
		OR			
4.	a)	Construct a signal flow graph for DIF algorithm if N=6.	7M		
	b)	Compute the IDFT of $X(k) = \{1,2,3,4\}$ using DIF-FFT.	7M		
_	- \	UNIT-III			
5.	a)	For the given specifications design an analog Butterworth filter			
		0.9 H(j) 1 for 0 0.2 .	014		
		H(j) 0.2 for 0.4 .	8M		
	b)	Compare Butterworth and Chebyshev approximations.	6M		
3.	a)	OR Explain the principle of designing FIR filters using frequency sampling			
٥.	a)	technique.	7M		
	b)	Compute 20 log w(e ^{jw}) at w=0 for the following windows:			
	S)	i. Bartlett window for add N			
		ii. Rectangular window			
		iii. Hamming window	7M		
		UNIT-IV			
7.	a)	What is the need for Multirate Digital Signal Processing?	7M		
	b)	Explain about the sampling rate conversion by a rational factor I/D.	7M		
3.	a)	OR Explain the applications of Multirate signal processing.	7M		
٥.	а) b)	Consider a ramp sequence and sketch its interpolated and decimated versions	/ IVI		
	D)	with a factor '3'.	7M		
		UNIT-V	7 141		
9.	a)	Discuss the applications of DSP in musical sound processing.	7M		
	b)	Discuss about spectral analysis of non-stationary signals.	7M		
	~,	OR	7 171		
).	a)	Explain about various signal compression techniques.	7M		
	b)	What are the effects of oversampling A/D converter?	7M		
	,				

END

Hall Ticket Number :						D 17
• • •						K-I/

Code: 7G363

III B.Tech. II Semester Regular & Supplementary Examinations July/August 2021

Microprocessors & Interfacing

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	со	Blooms Level
		UNIT-I			
1.	a)	Explain about EU-Execution Unit of 8086µP.	7M	1	2
	b)	Discuss all the general purpose registers available in 8086µP.	7M	2	6
		OR			
2.	a)	Analyze the addressing modes of 8086µP with examples.	7M	2	2
	b)	Create an assembly language program to perform ascending order of			
		given 100 numbers.	7M	1	6
		UNIT-II			
3.		Illustrate the pin configuration of 8086 μP.	14M	1	2
		OR			
4.	a)	Describe SRAM memory Cell.	7M	1	1
	b)	Distinguish SRAM and DRAM Memory Cells.	7M	1	4
_		UNIT-III			
5.	a)	Discuss 8255 mode-0 operations and determine the control word with	01/4	0	0
	b \	an example.	8M	2	6
	b)	Explain about BSR Control word.	6M	2	2
0	,	OR	71.4	•	0
6.	a)	Illustrate the D/A converter interfacing with 8086 μP.	7M	3	2
	b)	Show one sample program with the D/A Converter and 8086 μP.	7M	3	2
7	-1	UNIT-IV	CN4	4	0
7.	a)	Compare synchronous and asynchronous data communications.	6M	4	6
	b)	Explain 8251 UART Architecture and it's functionality.	8M	4	2
		OR		_	
8.	a)	Describe TTL to RS232C conversion.	7M	3	1
	b)	Construct one sample program for serial data transmission.	7M	4	6
_	,	UNIT-V		•	•
9.	a)	Elaborate the features of 80286 over 8086 μP.	7M	3	6
	b)	Compare Pentium and Pentium pro processors.	7M	3	5
		OR			
10.	a)	Analyze the Protected mode in the advanced processors.	7M	4	4
	b)	Describe Segmentation concept in 80286 µP.	7M	2	1
		END			

Hall Ticket Number :							
						D 17	
						K-I/	

Code: 7G362

III B.Tech. II Semester Regular & Supplementary Examinations July/August 2021

Microwave Engineering

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours Answer *any five* full questions by choosing one question from each unit (5x14 = 70 Marks)

		<u> </u>			
			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Starting from Maxwell's equations, derive the field equations of rectangular waveguides in TM mode.	7M	1	2
	b)	Starting from Maxwell's equations, derive the field equations of rectangular waveguides in TE mode.	7M	1	
		OR			
2.	a)	Why TEM wave propagation is not possible in rectangular wave guide	7M	1	1
	b)	A rectangular waveguide with dimension of 3 x 2 cms operates in TM11 mode at 10 GHz. Determine the characteristic wave impedance. UNIT-II	7M	1	2
3.	a)	What are TE _{m n} and TM _{n m} modes w.r.t a circular waveguide. Sketch the dominant modes.	7M	2	2
	b)	A cylindrical wave guide has an inner radius of 2 cm. find the cutoff frequency for the guide operating in TE11 mode. Calculate λ_g and Z_{TE} at 10 GHz (λ_0 =3cm)	7M	2	3
		OR	7141	_	Ū
4.	a)	Derive the Q for TM_{111} mode of rectangular cavity assuming lossy conducting walls and lossless dielectric.	7M	2	2
	b)	For the dominant mode of operation in an air filled circular waveguide of inner diameter 4 cms. Find: (i) Cut off wavelength. (ii) Guided wave length. (iii) Cut off frequency	7M	2	2
		UNIT-III		_	_
5.	a)	Draw the structure of Magic Tee and write its characteristics.	7M	2	1
	b)	Draw the structure of Ferrite isolator and explain its working.	7M	2	1
		OR			
6.	a)	Explain how Gyrator gives phase shift and explain it with neat diagram	7M	2	2
	b)	Derive the S matrix of directional coupler and define all the parameters. UNIT-IV	7M	2	3
7.	a)	How the oscillations are generated in reflex klystron and explain bunching	71.4	0	2
	h)	process with apple gate diagram. Derive the equation of efficiency for a reflex klystron oscillator	7M 7M	2	3 2
	b)	OR	/ IVI	2	2
8.	a)	What are the different modes of operation of TWT and explain them?	7M	2	1
	b)	How cross-field is used to generate oscillations in Magnetron and derive the			
		necessary equations?	7M	2	2
9.	a)	What is mean by transferred electron devices? Explain its principle of operation and draw its characteristics.	7M	3	2
	b)	How are the microwave measurements being different from low frequency			
		measurements? OR	7M	3	2
10.	a)	Explain with block diagram of power measurement with bolometer technique.	7M	3	2
	b)	Explain the TRAPATT diode with principle of operation with characteristics and			
		power output and efficiency ***FND***	7M	3	3
		EIND :			

Hall Ticket Number :							\neg
Code: 7G366						R-17	

III B.Tech. II Semester Regular & Supplementary Examinations July/August 2021

Nano Electronics

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		******			,
			Marks	СО	Blooms
		UNIT-I			2010.
1.	a)	List out the types of scanning probe microscopies?	4M		
	b)	Explain scanning Tunneling microscopies in detail?	10M		
		OR			
2.	a)	Explain Synthesis and Purification of Nanotubes?	7M		
	b)	Discuss the properties and applications of Nanotubes?	7M		
		UNIT-II			
3.		Explain briefly about Fabrication Techniques for Nanostructures	14M		
		OR			
4.	a)	Describe nanoimprint lithography. What is split gate technology?	7M		
	b)	Interpret the different types of quantum dots investigated?	7M		
		UNIT-III			
5.		Write short notes on:			
		a. Short channel MOS Transistor?b. Split gate transistor?			
		c. Electron wave transistor?	14M		
		d. Quantum cell Automata (QCA)? OR	14111		
C	۵)		71.4		
6.	a)	Explain the principle operation of Electron Spin Transistor.	7M		
	b)	Outline the device applications of quantum dot arrays	7M		
7.	٥)	UNIT-IV Describe the digital circuit design based on RTDs technology and list out			
١.	a)	its applications?	7M		
	b)	Explain three terminal RTDs technology?	7M		
	,	OR			
8.	a)	Explain the formation and working of Single electron Transistor (SET)?	9M		
	b)	Explain briefly the working principle of SET Adder with neat sketch?	5M		
		UNIT-V			
9.	a)	Explain the limits due to Thermal particle Motion?	10M		
	b)	List the replacement of Technologies in integrated electronics?	4M		
		OR			
10.	a)	Explain briefly about the "Nano systems as information processing machines?	10M		
	b)	What are the Hardware requirements of Nano systems?	4M		
		END			

Hall Ticket Number :								_
			,				R-17	

Code: 7G16D

III B.Tech. II Semester Regular & Supplementary Examinations July/August 2021

Object Oriented Programming Concepts

(Common to EEE & ECE)

Max. Marks: 70 Time: 3 Hours Answer *any five* full questions by choosing one question from each unit (5x14 = 70 Marks)

			Maylea	00	Blooms
			Marks	СО	Level
	,	UNIT-I			
1.	a)	How does object oriented approach differ from object based approach? Give the applications of OOP.	7M	CO1	L1
	b)	What are recursive constructors? Explain with an example	7M	CO1	L1
	٠,	OR		001	
2.	a)	What are merits and demerits of OO Methodology?	7M	CO1	L1
	b)	How data and functions are organized in Object Oriented Program?		001	
	,	Explain with an example.	7M	CO1	L1
		UNIT-II			
3.	a)	What is function overloading? What are the principles of function overloading?	7M	CO2	L1
	b)	What is inheritance? Present the advantages and disadvantages of			
		inheritance	7M	CO2	L1
		OR			
4.	a)	Explain operator overloading with the implementation of complex numbers.	7M	000	L2
	b)	Illustrate runtime polymorphism using virtual functions.	7 IVI 7M	CO2	L2 L2
	b)	UNIT-III	/ IVI	CO2	LZ
5.	a)	What are the primitive data types in Java? Write about type conversions.	7M	CO3	L1
	b)	Write a java program to illustrate the usage of conditional statements and		000	
	-,	looping statements.	7M	CO3	L3
		OR			
6.	a)	Write a java program to illustrate the increment & decrement operators,			
		shift operators and ternary operator.	7M	CO3	L3
	b)	How to assign the values to the variables in the class during the time of			
		creation of an object to that class? Explain with an example.	7M	CO3	L1
7.	2)	UNIT-IV With a suitable Java program explain user-defined exception handling.	7M	CO4	L3
۲.	a) b)	How to define a package? How to access, import a package? Explain with	<i>1</i> IVI	CO4	LS
	D)	examples.	7M	CO4	L1
		OR			
8.	a)	Explain the various access specifiers are used in java.	7M	CO4	L2
	b)	Explain multilevel inheritance with the help of abstract class in your program	7M	CO4	L2
	,	UNIT-V			
9.	a)	What is the difference between a thread and a process?	7M	CO4	L1
	b)	Explain the life cycle of an applet.	7M	CO4	L2
		OR			
10.	a)	Write a program to explain thread priorities usage.	7M	CO4	L3
	b)	Write an Applet to draw a smiley picture accept user name as a parameter			
		and display welcome message.	7M	CO4	L3
		END			

Hall Ticket Number :							
Code: 7G365	,	,	,				R-17

III B.Tech. II Semester Regular & Supplementary Examinations July/August 2021

Radar Engineering

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

F	answ	/er any tive tull questions by choosing one question from each unit (5x14 = ***********************************	= /U M	arks)
			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	List all the possible losses in a radar system and discuss the possible causes of each of them.	7M	1	L1
	b)	Describe the effect of pulse repetition frequency on the estimated unambiguous range of radar.	7M	1	L2
		OR			
2.	a)	Derive fundamental radar range equation governed by minimum receivable			
۷.	a)	echo power smin.	7M	1	L1
	b)	Estimate the radar cross-section of a spherical target if the wavelength of transmitting signal with reference to the target size is in Rayleigh region. UNIT-II	7M	1	L4
3.	a)	With the help of a suitable block diagram, explain the operation of a CW radar with non-zero IF in the receiver	7M	2	L2
	b)	Calculate the Doppler frequency of stationary CW radar transmitting at 6 MHz frequency when a moving target approaches the radar with a radial velocity of			
		100 Km/Hour	7M	2	L1
		OR			
4.	a)	Write short notes on Range and Doppler measurement of a target using a FM-			
		CW radar	7M	2	L1
	b)	Explain in detail the operation of FM-CW altimeter.	7M	2	L1
		UNIT-III			
5.	a)	What are blind speeds? Suggest a method to reduce the effect of blind speeds for unambiguous detection of a moving target	7M	3	L2
	b)	Calculate the lowest blind speed of an MTI system operating at 4.2 cm wavelength and transmitting at a pulse repetition time of 286 μ s.	7M	3	L1
		OR			
6.	a)	With the help of necessary block diagram explain the operation of an MTI radar system with a power amplifier in the transmitter.	7M	3	L1
	b)	Describe the method of staggering pulse repetition frequency to reduce the effect of blind speeds in an MTI system.	7M	3	L2
		UNIT-IV			
7.	a)	Discuss the effect of surface quality and reflection characteristics of a target on the angular tracking accuracy of a tracking radar	7M	4	L3
	b)	Describe the Amplitude comparison monopulse tracking technique in a radar			
	,	system with the help of necessary block diagram. OR	7M	4	L3
0	۵)				
8.	a)	With the help of a suitable block diagram, Sequential lobing type of tracking technique in a tracking radar system.	7M	4	L2
	b)	Describe the process of acquiring a moving target prior to tracking it along with the patterns used for acquisition.	7M	4	L3
		UNIT-V			
9.	a)	Derive the impulse response of a matched filter that is commonly used in a radar receiver.	7M	5	L4
	b)	Explain how a circulator can be utilized for a radar receiver protection.	7M	5	L3
	/	OR		٦	_•
10.	a)	Explain the principle behind the operation of duplexers and receiver protectors.	7M	5	L2
	b)	A radar receiver is connected to a 50 ohm resistance antenna that has an	7 101	5	L
		equivalent noise resistance of 30 ohms. Calculate the noise figure of the receiver and the equivalent noise temperature of the receiver. ***END***	7M	5	L1

Hall Ticket Number :						

Code: 7G361 III B.Tech. II Semester Regular & Supplementary Examinations July/ Aug 2021

VLSI Design

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 70

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
	,	UNIT-I			
1.	a)	Write about Bi-CMOS fabrication with a diagram.	7M		L1,l2
	b)	Identify the differences between CMOS and Bipolar technologies.	7M	CO1	L1,L2
	,	OR			L1,l2
2.	a)	Explain about NMOS fabrication steps with neat diagrams.	7M	CO1	L1,L2
	b)	With neat sketches, explain how diodes and resistors are fabricated in PMOS	71.4	004	
		process?	/ IVI	CO1	L1,L2
3.	a)	Write about the stick diagrams and design a stick diagram for two input N-MOS			
٥.	a)	NAND and NOR gates.	7M	CO2	L1,L2
	b)	Explain about the 2 MOS Design rules and discuss with a layout example	7M	CO3	L1,L2
		OR			L1,L2
4.	a)	Describe in detail about Layout design rules	7M	CO2	L1,L2
	b)	Draw the stick diagram and layout diagram for the CMOS gate computing.			
		((A+B+C).D)'	7M	CO3	L1,L2
		UNIT-III			
5.	a)	Describe about the switch logic and alternate gate circuits used in VLSI.	7M	CO2	L1,L2
	b)	What are the alternate gate circuits available? Explain any one of them with			
		suitable sketch.	7M	CO3	L1,L2
	,	OR			
6.	a)	What is meant by sheet resistance Rs?	5M	CO2	L1,L2
	b)	Calculate on resistance of an inverter from VDD to GND. If n- channel sheet resistance Rsn=10 ⁴ per square and P-channel sheet resistance Rsp=3.5×10 ⁴			
		per square.(Zpu=4:4 and Zpd=2:2).	9M	CO3	L1,L3
		UNIT-IV	0	000	21,20
7.	a)	Describe the nature of a parity generator and explain its structured design approach	7M	CO3	L1,L2
	b)	Draw and give the design approach for a carry look ahead adder with its structure		CO3	L1,L2
	,	OR			L1,L2
8.	a)	Explain the basic architecture of FPGA	7M	CO3	L1,L2
	b)	Explain about High density memory elements with neat diagrams.	7M	CO3	L1,L2
		UNIT-V			,
9.	a)	What is the need of testability? Explain design for testability	7M	CO3	L1,L2
	b)	What are the objectives of BIST?	7M	CO3	L1,L2
		OR			L1,L2
10.	a)	Explain test principles of VLSI circuits.	7M	CO3	L1,L2
	b)	Why stuck at faults occur in CMOS circuits? Explain with suitable logic diagram			
		and layout?	7M	CO3	L1,L2
		END			

R-17