Hall Ticket Number :													
Code: 20A2H08T	<u> </u>								_]		R-20		
III B.Tech. II Ser	nester	-		Honors ric Veh			atior	is M	ay/J	une 2	2024		
Max. Marks: 70	(Electr	ical d		Electroni	cs En	gin	eerir	ng)		Tim	ie: 3 Ho	Urs	
Note: 1. Question Paper 2. In Part-A, each 3. Answer ALL th	questio	n carr	ies 7	Fwo mar l	xs.		art-F	B)					
		(C		<u>PART-A</u> ulsory qu	estion)							
1. Answer all the fo	llowing	short	ansv	ver questi	ons	(!	5 X 2	= 10	OM)	C	D BL		
a) Write any 2 F	Present r	najor	issu	es in EV s	ystem	S					1 L1		
b) Explain the fu	unction o	of a so	olenc	bid							2 L1		
c) What is mear	n by disc	charge	e rate	e of a batt	ery						3 L1		
d) Advantage of	AC ma	chine	s ove	er DC mad	hines						3 L1		
e) Write short ne	otes on	motor	sizir	ng							5 L1		
				PART-B									
Answer five question	s by ch	oosin	g or	ne questio	on fro	m e	ach	unit	(5 x ′	12 = 6			
					_						Marks	CO	
				UNIT–I									
Explain historical and read	sent dev	elopn	nents		c vehi	cles	6				12M	1	
				OR									
With neat block diagram	explain	conce	·		/ehicle	es					12M	1	
			<u> </u>	UNIT–II									
Write short notes on any	4 electi	ical v	ehici	•	ters						12M	2	
Evalain following Electr	ical tam			OR	· o o o o i	horo	2)	^ ~ ~	ootor	۹ <u>۸</u> ۵			
Explain following Electr Generator d) Dc motor 8		,		• /	apaci	lors	C) /	чс п	10101	& AC	12M	2	
			, <u>,</u>	UNIT-III								_	
Explain Technical chara	cteristics	sand			_ Batteri	es.					12M	3	
				OR								-	
Explain classification of	batteries	s, Cap	acity		ge rate	è					12M	3	
·		· •]								
Explain different types o	f electric	al ma	ichin	es that are	e usec	l in	EV s	yster	ns		12M	4	
				OR									
Explain three phase AC	inductio	n mao	chine	e used in E	EV sys	tem	าร				12M	4	
				UNIT–V									
Explain different Compo	nents lik	e gea	ırs, d	lifferential	clutch	n in	Elec	tric v	ehicle	s	12M	5	
				OR									
What is mean by braking			ing r	need to be	emple	oye	d in e	electi	ic veł	nicles.			
What are different types	of braki	ng?									12M	5	
			*	`** End ***									

Hall Ticket Number :			
Code: 20A262T	R-20		
III B.Tech. II Semester Regular & Supplementary Examinations Ma Microprocessors and Microcontrollers (Electrical and Electronics Engineering)	y/June :	2024	
	Time: 3 H	lours	
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
<u>PART-A</u> (Compulsory question)			
1. Answer all the following short answer questions $(5 \times 2 = 10M)$		со	BL
a) List the features of 8086 microprocessors		CO1	L1
b) List the modes of operation of 8255		CO2	
c) What are differences of SPI and I2C protocols		CO3	
d) What are the different addressing modes of 8051 microcontrolle	er	CO4	
e) List and explain the registers available in user mode of an ARM		CO5	L1
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 12 :		-	
	Marks	CO	BL
UNIT-I 2. a) Explain about machine language instruction format and			
 a) Explain about machine language instruction format and addressing modes in 8086 	6M	CO1	L4
b) Mention the total number of registers of 8086 and		001	L4
show the manner in which they are grouped		CO1	12
OR	e	001	LZ
3. a) Explain in detail the memory organization			
mechanism in 8086 microprocessor		CO1	12
b) Mention the address capability of 8086 and also		001	
show its memory map of overlapped and non			
overlapped method.	6M	CO1	L4
4. a) What is peripheral interfacing? Explain the block			
diagram of 8255		CO2	L2
b) Explain various modes of operation of 8255	6M	CO2	L2
OR			
5. a) Draw and explain the block diagram of 8259 interrupt			
controller		CO2	L4
	-		

	Cod	de: 20A	262T	
b)	Explain in detail about interfacing of 8255 to 8086	6M	CO2	L2
	UNIT–III			
6. a)	Discuss in detail about synchronous communication	6M	CO3	L2
b)	Explain in detail about SPI	6M	CO3	L2
	OR			
7. a)	Describe RS232C to TTL conversion.	6M	CO3	L2
b)	Discuss about blue tooth communication module	6M	CO3	L2
	UNIT–IV			
8. a)	How bit level XOR operations can be done in 8051.	6M	CO4	L5
b)	Explain the various addressing modes in 8051 microcontroller.	6M	CO4	L2
	OR			
9. a)	Discuss about memory organization of 8051 microcontroller	6M	CO4	L2
b)	Explain in detail about serial communication of 8051			
	microcontroller	6M	CO4	L2
	UNIT-V			
10. a)	Discuss the architecture of ARM with a neat diagram			L2
b)	Differentiate the ARM 7 and ARM9 microcontroller	6M	CO5	L2
	OR			
11. a)	Explain the I/O ports timers in arduino.	6M	CO5	L2
b)	Explain the concept of PWM and ADC in arduino *** End ***	6M	CO5	L2

	umber :			R-20	
Code: 20A261		Regular & Suppleme	entary Examinatic	ons May/June 2	024
		Power System	•	,.	
Max. Marks: 7		(Electrical and Electro	nics Engineering)	Time: 3 H	OUIC
Max. Marks. 7	0	******	* *	11116.511	0013
2. In Par	t-A, each c	consists of two parts (Pa question carries Two ma e questions in Part-A an	urks.		
		<u>PART-</u> (Compulsory o			
1. Answer a	II the follo	owing short answer qu	uestions (5 X 2	2 = 10M) CO	BL
a) Write A	pplicatior	ns of Bus Admittance	e Matrices	1	L2
b) What is	necessit	y of power flow studi	es	2	L2
c) Explain	Positive	, Negative and zero	sequence comp	onents in	
power s	systems			3	L2
d) Describ	e the ste	ady state stability po	wer limit	4	L2
e) List out	the appli	cations of equal area	a criterion	5	L2
		PART-I	—	(E v 40	-)
Answer nve	questions	s by choosing one ques	tion from each unit	(5 x 12 = 60 Mark Marks	-
		UNIT–	4	Marito	00
Obtain	admittar	nce matrix from	basics using	singular	
transform	mation m	ethod.		12M	1
		OR			
Obtain Y	rens for a	a 4 - bus system with	ו the following da	ita	
	Bus	Series			
			Shunt		
	Code	Impedance(Z _{pq})	Admittance (ypq)	
	Code 1 - 2	Impedance(Z _{pq}) 0.02 + j0.08	Admittance (y _{pq} j0.08)	
	Code 1 - 2 2 - 3	Impedance(Z _{pq}) 0.02 + j0.08 0.04 + j0.16	Admittance (y _{pq} j0.08 j0.05)	
	Code 1 - 2 2 - 3 2 - 4	Impedance(Z _{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16	Admittance (y _{pq} j0.08 j0.05 j0.025) 12M	1
	Code 1 - 2 2 - 3	Impedance (Z_{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16 0.01 + j0.04	Admittance (y _{pq} j0.08 j0.05 j0.025 j0.03		1
	Code 1 - 2 2 - 3 2 - 4 3 - 4	Impedance(Z _{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16 0.01 + j0.04 UNIT-	Admittance (y _{pq} j0.08 j0.05 j0.025 j0.03	12M	
a) Derive S	Code 1 - 2 2 - 3 2 - 4 3 - 4 Static load	Impedance(Z _{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16 0.01 + j0.04 UNIT- d flow equations in p	Admittance (y _{pq} j0.08 j0.05 j0.025 j0.03 II power system	12M 6M	2
a) Derive S	Code 1 - 2 2 - 3 2 - 4 3 - 4 Static load	Impedance(Z _{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16 0.01 + j0.04 UNIT- d flow equations in p s Seidel method Algorithms	Admittance (y _{pq} j0.08 j0.05 j0.025 j0.03 II power system	12M 6M	
a) Derive S b) Explain t	Code 1 - 2 2 - 3 2 - 4 3 - 4 Static load the Gaus	Impedance(Z _{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16 0.01 + j0.04 UNIT- d flow equations in p s Seidel method Algo OR	Admittance (y _{pq} j0.08 j0.05 j0.025 j0.03 II power system orithm without P-\	 6M / buses 6M	2
a) Derive S b) Explain t Obtain t	Code 1 - 2 2 - 3 2 - 4 3 - 4 Static load the Gaus he mathe	Impedance (Z_{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16 0.01 + j0.04 UNIT- d flow equations in p is Seidel method Algorithms OR ematical model for factors	Admittance (y _{pq} j0.08 j0.05 j0.025 j0.03 II power system orithm without P-\ ast decoupled me	12M 6M / buses 6M ethod of	2
a) Derive S b) Explain t Obtain t	Code 1 - 2 2 - 3 2 - 4 3 - 4 Static load the Gaus he mathe	Impedance(Z _{pq}) 0.02 + j0.08 0.04 + j0.16 0.04 + j0.16 0.01 + j0.04 UNIT- d flow equations in p s Seidel method Algo OR	Admittance (y _{pq} j0.08 j0.05 j0.025 j0.03 II power system orithm without P-\ ast decoupled me	12M 6M / buses 6M ethod of	2

UNIT–III

6. a	a)	Explain impedance diagram and reactance diagrams	6M	3	L2
I	b)	The ratings of a three phase power system shown in Fig.1. are given below			
		G : 60 MVA 20kV X=9%			
		T1: 50MVA 20/200kV X=10%			
		T2: 50MVA 200/20kV X=10%			
		M: 43.2 MVA 18kV X=8%			
		Line: 200kV Z= 120+j200			
		Draw the impedance diagram showing all impedances in			
		per unit on a 100MVA base. Choose 20 kV as the voltage			
		base for generator	6M	3	L3
		OR			
7.		Derive the expression for the fault current, when an unloaded alternator subjected to LL and LLG fault	12M	3	12
		UNIT-IV	12101	5	LZ
8. 8	a)	Define the terms Steady state, Dynamic state and Transient			
	,	state stability limit	6M	4	L2
I	b)	A salient pole synchronous generator is connected to an infinite bug. Derive an expression for the electrical extruct			
		infinite bus. Derive an expression for the electrical output power of the generator and draw P - δ curve	6M	4	L3
		OR			
9.		Prove that maximum power transfer can be achieved when			
0.		X=3 R	12M	4	L3
		UNIT–V			
10. a	a)	What is critical clearing angle? Derive the mathematical			
		expression for critical clearing angle	6M	5	L3
I	b)	Discuss in brief the methods to improve Transient Stability	6M	5	L2
		OR			
11.		Explain the Equal Area Criterion by deriving the necessary			
		expression and apply the Equal Area Criterion for the case			
		of "Removal of one of parallel transmission line" for			
		analyzing the transient stability	12M	5	L4
		*** End ***			

Code: 20A26BT	R-20)
III B.Tech. II Semester Regular & Supplementary Examination	ns May/June	2024
Power Semiconductor Drives	,.	
(Electrical and Electronics Engineering)		
Max. Marks: 70	Time: 3 I	Hours
********* Note: 1. Question Paper consists of two parts (Part-A and Part-B)		
2. In Part-A, each question carries Two marks .		
3. Answer ALL the questions in Part-A and Part-B		
<u>PART-A</u>		
(Compulsory question)	60	
1. Answer all the following short answer questions $(5 \times 2 = 10M)$	CO	BL
a) Write the generalized equations of DC motor?	CO1	
b) Define Braking? And give various types of braking.	CO1	
c) List the various types of basic chopper configuration?	CO1	
d) Draw the v/f characteristics of Induction motor controlled from Stato		
e) Brief about Slip power Recovery scheme?	CO1	L3
PART-B		
Answer <i>five</i> questions by choosing one question from each unit (\$		-
	Marks	CO
UNIT–I		
a) Explain the Speed torque Characteristics of a dc series motor conne		
a three phase fully controlled converter		CO3
b) A 18HP, 210V series motor running at 1300 rpm is controlled by	•	
converter, combined field and armature resistance 0.75Ω . Followi	0	
motor constants Kaf = 0.03 N –m/A ² , Kres = 0.075 V-s/rad, Supply is 230V. Determine Torque and Power factor for α = 45 ⁰ and	•	
1500rpm, assuming continuous and ripple free motor current.		CO4
OR	•	
a) Discuss about continuous operation of a 1¢ rectifier fed DC series mo	tor? 6M	CO2
b) The speed of a separately excited dc motor is controlled by 3 phase		002
converter from a 3 phase 415 V 50 Hz supply. The motor constar		
inductance10 mH, resistance 0.9 ohm and armature constant 1.5 v		
Calculate speed of the motor at a torque of 50 Nm when the conve		
fired at 45°. Neglect losses in the converter.	6M	CO4
UNIT–II		
a) Explain briefly four-quadrant operation of d.c separately excited mo		
from fully controlled rectifier.	6M	
b) Distinguish between two quadrant and four quadrant drives.	6M	CO3
OR		
Explain briefly the following methods of braking of a D.C Motor		
a) Regenerative braking b) Dynamic braking c) Plugging	12M	CO2
a) Distinguish between class A and class B choppers with suitable exa	•	000
for speed control of motors.	юМ	CO2
	Dow	e 1 of 2
	rage	

Hall Ticket Number :

R-20

		Cod	de: 20A2	26BT	
	b)	A 230V, 500 rpm, 4.1A armature resistance and inductances are 7.56 and 55.0 mH respectively of 1HP motor is driven with armature supplied from class A chopper and a 240V DC source. The field current is held constant at the value that gives rated operation on 230V the chopping frequency is constant at 50 Hz .The minimum load torque is 5 N-m i. Determine the value of 'ton' N-m ii. Determine whether 'la' continuous for the conditions of (i) iii. Determine the minimum value of 'ton' for which the current is continuous at 500 rpm and corresponding coupling torque OR	6M	CO4	L4
7.		A 230V, 1750 rpm, 74A D.C motor has an armature resistance is 0.180 ohms is driven with its armature supplied from a class A chopper and a 240 V. D.C source given rated operation on 230V. The chopping frequency is constant at 500 Hz. If the average armature current is equal to the rated value and 'ton' is at the setting that given largest harmonic content determine a) The speed of motor b) The RMS armature current c) The RMS and line currents ripple factors	12M	CO4	L4
		UNIT–IV			
8.	a)	A 3- ϕ , 415V, 50Hz, 4-pole, star connected induction motor has the following equivalent circuit parameters: R1=1.01 Ω , R ₂ ¹ =0.69 Ω , X1=1.08 Ω , X ₂ ¹ =1.60 Ω , Xm = 36 Ω . The no load loss is negligible. The rated torque, proportional to square of the speed, is 42 N-m, at full load speed of 1450rpm for a motor speed of 1290 rpm, determine (i) load torque, (ii) rotor current I ₂ ¹ (iii) The stator supply values	GM	004	
	b .)	voltage	6M	CO4	L4
	b)	Discuss about various speed control arrangements using Voltage Source Inverter? OR	6M	CO3	L2
9.	a) b)	Discuss about various speed control arrangements using Voltage Source Inverter? Derive the Expression in Static Resistance control method for the speed control	6M	CO3	L2
	D)	of Induction Motor?	6M	CO2	L3
		UNIT–V			
10.		A 440V, 50Hz, 970 rpm, 6-pole, Y-connected, 3-phase wound rotor induction motor has following parameters referred to the stator: The stator to rotor turns ratio is 2. Motor speed is controlled by Static Scherbius Drive. Drive is designed for a speed range of 25% below the synchronous speed. Maximum value of firing			
		angle is 165° . Calculate (i) Transformer turns ratio. (ii) Torque for a speed of 780rpm and = 140° (iii) Firing angle for half the rated motor torque and speed			
		of 800rpm	12M	CO4	L4
		OR			
11.	a)	Explain with neat diagram about Load Commutated Inverter fed Synchronous motor speed control?	6M	CO2	L3
	b)	 A 6 MW, 3-phase, 11 kV, Y-connected, 6-pole, 50Hz, 0.9(leading) power factor synchronous motor has Xs=9 and Rs=0. Rated field current is 50A. Machine is controlled by variable frequency control at constant v/f ratio up to the base speed and at constant V above based speed. Determine (i) Torque and field current for the rated armature current, 750rpm and 0.8 leading power factor (ii) Armature current and power factor for half the rated motor torque, 1500rpm 			
		and rated field current. *** End ***	6M	CO4	L4
		LIIU			

	Hall T				
		: 20A263T	R-20		
		Tech. II Semester Regular & Supplementary Examinations May ,	/ June 202	24	
		Power System Operation and Control			
,	Max	(Electrical and Electronics Engineering) Marks: 70	Time: 3 Hc	ours	
		******		015	
ľ		 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
		<u>PART-A</u> (Compulsory question)			
1	I. Ans	swer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	СО	BL	
	a)	Draw the input-output curve of a generating unit?	1	2	
	b)	Write the unit of R?	2	2	
	c)	What is the maximum permissible change in frequency?	3	2	
	d)	List out the sources of reactive power?	4	2	
	e)	What is the function of power exchange?	5	2	
	-	PART-B			
	Ans	wer <i>five</i> questions by choosing one question from each unit (5 x 12 :		-	
			Marks	CO	BL
2.	a)	UNIT-I Derive the condition for optimum dispatch including			
۷.	a)	transmission losses?	6M	1	3
	b)	Incremental fuel costs in Rs/MWh for two units in a plan	t		
		are given $by \frac{dF_1}{dP_1} = 0.1P_1 + 30; \frac{dF_2}{dP2} = 0.12P_2 + 16$. The minimum	I		
		and maximum loads on each unit are to be 20 MW and 125 MW respectively. Determine the incremental fue cost and the allocation of load between units for the minimum cost when load is 150 MW. Assume both the units are operating	 ;	1	3
		OR			
3.	a)	Fig. below shows a two bus system. If a load of 125 MW is transferred from plant 1 to load, a power loss of 15.625 MW occurs. Find generation schedule and load demand if cost of received power is Rs.24/MWh. The incrementation	5 1		
		production costs are $\frac{dF_1}{dP_1} = 0.025P_1 + 15; \frac{dF_2}{dP2} = 0.05P_2 + 20$			
		Load	6M	1	4
	b)	Derive expression for B _{mn} coefficients?	6M	1	3
4.		Derive solution for short term hydro-thermal scheduling]		
		using kirchmayer's method	12M	2	3

Code: 20A263T

5.		Explain about hydro – thermal co-ordination with necessary equations	12M	2	2
		UNIT–III			
6.	a) b)	Explain the necessity of maintaining frequency constant. Determine primary ALFC loop parameters for a control area having following parameters. Total rated capacity=2000MW Nominal operating load=1000MW Inertia Constant H=5 Regulation R=2.4 Hz/pu MW Assume that load increases 1% for 1% increase in	6M	3	2
		frequency?	6M	3	4
		OR			
7.	a)	Two synchronous generators operate in parallel and supply a total load of 400MW, the capacities of machines are 200MW and 500MW and both have generator drooping Characteristics of 4% from no load to full load. Calculate the load taken by the each machine. Assuming free governor action also finds system frequency at this load	6M	3	4
	b)	Explain the PI control of single area system?	6M	3	2
	,			-	
8.	a)	Explain the advantages and disadvantages of synchronous condenser.	6M	4	2
	b)	What is the role of reactive power in the power system? Discuss in detail about the generation and absorption of reactive power in power system components	6M	4	2
		OR	-		-
9.	a)	Distinguish shunt and series compensations?	6M	4	2
0.	b)	A short transmission line has an impedance of (2+j3) ohms interconnects two power stations, A and B both operating at 11 KV, equal in magnitude and phase. To transfer 25 MW at 0.8 p.f. lagging from A to B determine		-	Z
		the voltage boost required at plant A.	6M	4	3
		UNIT–V			
10.	a)	Explain the roles and responsibilities of ISO in pool market?	6M	5	2
	b)	Explain about congestion pricing?	6M	5	2
		OR			
11.		Explain about different transmission pricing methods in power systems?	12M	5	2
		EIIU			

Γ	Hall	Ticket Number :			
		e: 20A26DT	R-2	0	
		.Tech. II Semester Regular & Supplementary Examinations May	/ June	2024	-
		Solar and Wind Energy Systems			
	Max	(Electrical and Electronics Engineering) . Marks: 70	Time: 3	Hours	
	_	*****	11110.0	110013	
	Note	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two marks. 			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u> (Compulsory question)			
1.	Ans	swer all the following short answer questions $(5 \times 2 = 10 \times 10^{10} \times 10$) CO	BL	-
	a)	What are the different applications of solar PV system?	CO1	L2	2
	b)	What is a solar PV module?	CO2	2 L2	
	C)	What is pitch control in wind energy conversion system.	COS	B L1	
	d)	What are the criteria for site selection of a windmill?	CO4	L2	
	e)	What is power quality issue?	CO5	5 L2	
		PART-B			
	An	swer <i>five</i> questions by choosing one question from each unit (5 x 12	2 = 60 Ma Marks	rks) CO	BL
		UNIT–I	Marks	00	DL
2.	a)	Express the estimation process of solar radiation.	6M	CO1	L2
	b)	Write short note on			
		(i) parabolic through (ii) Fresnel	6M	CO1	L2
		OR			
3.	a)	Draw the block diagram of Solar PV Tracking System			
		and discuss.	6M	CO1	L2
	b)	Explain parabolic trough collector for solar system.	6M	CO1	L2
		UNIT–II			
4.	a)	Classify the solar cells. Derive an expression for			
		maximum power output and efficiency of solar cells.	6M	CO2	L2
	b)	Describe the operation of power electronic converter for			
		solar systems	6M	CO2	L2
		OR			
5.		Illustrate the following terms for solar photovoltaic:			
		(i) Amorphous (ii) monocrystalline (iii) polycrystalline	12M	CO2	L2
		(i) Amorphous (ii) monocrystalline (iii) polycrystalline	12M	CO2	L2

UNIT-III

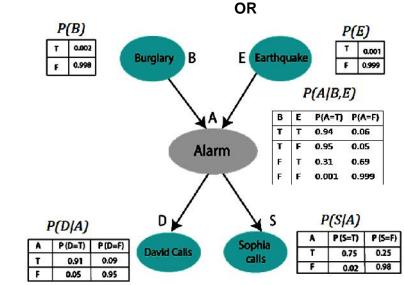
6.	a)	Describe the basic principle of wind energy conversion and derive the expression for power developed due to			
		wind.	6M	CO3	L2
	b)	Find the tip-speed ratio if a 6 m diameter rotor has rotation of 20 rpm and the wind speed is 4 m/s. What is			
		the implication of tip speed ratio?	6M	CO3	L3
		OR			
7.	a)	Illustrate the following terms for wind system:			
		(i) Betz limit (ii) Tip speed ratio	6M	CO3	L2
	b)	History of wind power in Indian and Global statistics UNIT-IV	6M	CO3	L2
8.	a)	Explain the operation and characteristics of doubly-fed			
		induction generator.	6M	CO4	L2
	b)	Discuss the operation of power electronic converter in			
		wind power plant.	6M	CO4	L2
		OR			
9.	a)	Discuss the operation and characteristics of Permanent-			
		Magnet Synchronous Generators	6M	CO4	L2
	b)	Describe the Generator-Converter configurations for			
		wind system	6M	CO4	L2
		UNIT-V			
10.	a)	Discuss the behavior of solar PV and wind farm during			
		grid disturbances	6IVI	CO5	L2
	b)	Describe the real and reactive power regulations in grid	6M		
		integration	OIVI	CO5	L2
		OR			
11.		Explain the operation of hybrid solar PV and wind power	121/	007	
		system *** End ***		CO5	ĽŻ

•								R-20		
Co		-	stor Mino	rs Poo	ular Evar	ninations		n = 2024		
				-						
							'9			
Hall Ticket Number : R-20 Code: 20A33M02 R-20 Ill B.Tech. II Semester Minors Regular Examinations May/June 2024 Fundamentals of Machine Learning (Common to CE, EEE, ME and ECE) Max. Marks: 70 Time: 3 Hours Note: I. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) CO 1. Answer all the following short answer questions (5 X 2 = 10M) CO BL a) Define supervised learning. CO1 L1 b) What is loss function? CO2 L2 c) Define conditional probability. CO3 L1 d) What is the metric to measure the uniformity of target function? CO4 L2 e) Define Agent. CO5 L1 d) What is the metric to measure the uniformity of target function? CO4 L2 e) Define the perspectives in machine learning? 6M CO1 L1 a) Summarize the issues in machine learning? 6M CO1 L2 e) Define the perspectives in machine learning? 6M CO1 L2 oR Apply the Candidate Elimination algorithm for the given set of training ex										
Not	~	.		.	•	ind Part-B)				
						t-B				
	<i>5.1</i> ms we									
						n)				
	1. Answer	all the follow		-	vi	<i>,</i>	= 10M)	CO BL	_	
			•			,	,	CO1 L1		
	,	•	•					CO2 L2		
	c) Def	ine conditior	nal probabil	ity.				CO3 L1		
	d) Wh	at is the met	ric to meas	ure the	uniformity	of target fu	nction?	CO4 L2	2	
	e) Def	ine Agent.			-	-		CO5 L1		
		-		РАТ	RT-R					
	Answer <i>fiv</i>	e questions	by choosing			m each unit	(5 x 12 =	60 Marks)	
	-	-		_						
								Marks	CO	E
-)	0	. (h						014	004	
									COT	
D)				ie iearn	ing. How (does nypoti	nesis spa		CO1	
	roproconto		, loanning.	O	R			0 M	001	
	Apply the	Candidate	Elimination	_		e aiven set	of trainir	าต		
				•		•		•		
	boundary h	ypothesis fo	or the given	datase	t.			1		
	verbal	technical	aptitude	test1	test2	CGPA	Placed			
	Better	Good	Medium	High	High	Excellent	Yes			
	Better	Good	High	High	High	Excellent	Yes			
	Normal	Medium	High	High	Medium	Medium	No			
	Better	Good	High	High	High	Medium	Yes	12M	CO1	
				UNI	T–II					
a)					•		nidden lay			
	and binary	class output	ayer. Exp	iain the	torward pr	opagation.		6M	CO2	

b) Explain the various activation functions in machine learning. 6M CO2 L2

5. Apply the ID3 decision tree algorithm to classify the given dataset. All leaf nodes should be classified as approved **Yes** or **No** in a tree. It states that advertisement is broadcasting proposal is approved or not.

Price	Newspaper	Youtube	FB	ΤV	Approved		
30-40L	Yes	Yes	No	No	Yes		
30-40L	Yes	No	Yes	Yes	Yes		
40-50L	Yes	No	No	Yes	No		
30-40L	Yes	Yes	Yes	Yes	Yes		
20-30L	No	No	No	No	No		
30-40L	Yes	No	No	Yes	No		
50-60L	Yes	No	No	No	Yes		
40-50L	No	No	No	Yes	No		
30-40L	Yes	Yes	No	No	Yes		
20-30L	No	Yes	No	Yes	No		


12M CO2 L3

UNIT–III

- 6. a) Apply Bayes theorem to find Maximally A Posteriori hypothesis from hypotheses space.
 - b) Describe the Minimum Description Length principle.

7.

a)

Apply the BBN to calculate the probability that alarm has sounded, but there is neither a burglary, nor an earthquake occurred, and David and Sophia presumed that they heard the alarm sound.

b) Describe all the necessary steps of fitness function evaluation using genetic algorithm.
 6M

UNIT-IV

- 8. a) Discuss the sequential covering algorithm in learning rules. CO4 6M Summarize the PROLOG-EBG properties. CO4 b) 6M OR 9. a) Explain the first order inductive learning rule. 6M CO4 Discuss the inverted resolution rule learning. CO4 b) 6M UNIT-V CO5 10. Illustrate the markov-decision process in learning the environment. 6M a) Differentiate the inductive and analytical learning. 6M CO5 b) OR Summarize the components and its features of reinforcement learning. 6M a)
- a) Summarize the components and its features of reinforcement learning.
 b) How does the knowledge used to alter the search objective?
 6M CO5 L2
 6M CO5 L2
 6M CO5 L2

- 6M CO3 L3 6M CO3 L2

6M

CO3

CO3

L3

L2

L2

L2

L2

L2

L2

L2

^ -	all Ticket Number :	R-20	
Co	de: 20A5M05 III B.Tech. II Semester Minors Regular Examinations May/June	2024	
	Computer Organization	2024	
	(Common to CE, EEE, ME and ECE)		
Mc	ax. Marks: 70 Ti	me: 3 Ho	ours
No	te: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks .		
	3. Answer ALL the questions in Part-A and Part-B		
	<u>PART-A</u> (Compulsory question)		
1.	Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$) CO	BL
	a) Differentiate between combinational and sequential circuits.	1	L2
b) What is register transfer language?			
	c) What are the functions of control memory?	3	L1
d) What is cache memory?			
	 e) What is the need of I/O interface module 	5	L1
	PART-B		
A	nswer <i>five</i> questions by choosing one question from each unit (5 x 12 =		-
	UNIT–I	Marks	CO
၁)	Explain the floating point representation with an example.	6M	4
	Explain about the error detection codes.	6M	1
D)	•	OIVI	1
-)	OR Devferme and evaluit evidence addition evidence and		
a)	Perform and explain arithmetic addition, subtraction, and	6M	
ଜ)	overflow detection using fixed point representation.		1
b)	Describe the different types of computers.	6M	1
2)	UNIT-II Discuss about the crithmetic logic shift unit with examples	GM	
	Discuss about the arithmetic logic shift unit with examples.	6M	2
	Describe the memory reference instructions with an example.	6M	2
b)			
b)	OR		
b)	Explain about the arithmetic micro operations.	6M	2
b)	Explain about the arithmetic micro operations. Explain about the RISC architecture.	6M 6M	2 2
b) a)	Explain about the arithmetic micro operations. Explain about the RISC architecture.		
a)	Explain about the arithmetic micro operations. Explain about the RISC architecture.		

	Cod	ode: 20A5M05		
7. a)	Compare the hard wired control unit and micro programmed control unit	6M	3 L3	
b)	Explain the operation of a Micro programmed control unit using a diagram	6M	3 L2	
8.	Explain how multiplication is done for floating point numbers with flow chart.	12M	4 L2	
	OR			
9.	With a neat block diagram explain the virtual memory address translation	12M	4 L2	
	UNIT–V			
10. a)	Discuss about Input-Output Interface	6M	5 L2	
b)	What is priority interrupt? Discuss about daisy chaining priority interrupt.	6M	5 L2	
	OR			
11. a)	Explain about DMA	6M	5 L2	
b)	Explain the five stage Instruction pipeline with timing diagram.	6M	5 L2	

*** End ***