
ŀ	lall -	Ficket Number :			
С	ode	: 20A262T	R-20)	
		III B.Tech. II Semester Regular Examinations June 202	23		
		Microprocessors and Microcontrollers			
		(Electrical and Electronics Engineering)	- ; 0		
Ν	lax.	Marks: 70	Time: 3	Hours	
N	ote:	1. Question Paper consists of two parts (Part-A and Part-B)			
- '		2. In Part-A, each question carries Two marks.			
		3. Answer ALL the questions in Part-A and Part-B			
		PART-A			
		(Compulsory question)		~~~	
1.		wer all the following short answer questions $(5 \times 2 = 10 \text{ M})$		CO	BI
	,	List different conditional flags in 8086		CO1	
		Describe How DMA helps in fast data transfer		CO2	
		Differentiate synchronous and asynchronous communication		CO3	
	,	List different interrupts in 8051		CO4	
	e)	Describe the applications of ARM		CO5	5 L:
	Ans	<u>PART-B</u> wer <i>five</i> questions by choosing one question from each unit (5 x 1	2 = 60 Mai	rks)	
	/0		Marks	CO	BL
		UNIT–I			
2.		With a neat sketch explain in detail the internal hardware architecture of	of		
		8086 microprocessor	12M	CO1	L5
		OR			
3.	a)	Discuss any 6 arithmetic instructions with examples		CO1	L2
	b)	Develop an ALP in 8086 to find the number is ODD or EVEN	4M	CO1	L6
			1014		
1.		Explain different I/O modes in 8255 PPI OR	12M	CO2	L2
5.	a)	Show the interrupt vector table of 8086 and explain	8M	CO2	L3
	b)	Explain how the interrupts are handled in 8086	4M	CO2	L2
	2)			002	
S.	a)	Show how the data transferred in synchronous communication	4M	CO3	L3
	b)	Discuss ZIG-bee communication protocols		CO3	L2
	,	OR			
7.		Explain RS232 signals and interfacing for serial communication UNIT-IV	12M	CO3	L2
3.	a)	Describe the timer /counter in 8051	4M	CO4	L2
	b)	Explain timer in different modes	8M	CO4	L2
	,	OR			
9.		Explain the internal memory organization in 8051 UNIT-V	12M	CO4	L2
).	a)	List architectural features of ARM processor	4M	CO5	L1
	b)	With neat sketch explain the architecture of ARM7	8M	CO5	L2
		OR			
۱.	a)	Discuss the function of I/O ports in ARDUINO	8M	CO5	L2
	b)	Illustrate the applications of PWM	4M	CO5	L3
		*** End ***			

Hall Ticket Number :						Г		
Code: 20A261T							R-20	
III B.Tec	h. II Semes	ter Regula	ar Examina	ations	s June	e 202	3	
	Pov	ver Syste	m Analys	is				
	(Electrical	and Electi	onics Engi	neerir	ng)		T' 0.11	
Max. Marks: 70		* * * * * *	***				Time: 3 Hou	Jrs
Note: 1. Question Pape 2. In Part-A, eac 3. Answer ALL	h question ca	rries Two n	narks.		B)			
		PAR						
		Compulsor	• /					
Answer all the follo	•	answer q	uestions	(5	5 X 2	= 10	M) CC) BL
a) Define: Primitive	e network.						1	1
b) Classify buses	with known	and unkn	own para	mete	rs.		2	1
c) Define: Per unit	system.						3	1
d) What is meant l	by Steady s	state stabi	lity power	limit	?		4	1
e) Classify the pow	ver system	stability.					5	1
		PAR		_				
Answer <i>five</i> questio	ns by choosi	ing one que	estion from	each	unit (5 x 12		
							Marks	CO
		UNIT				_		
		for Y-bu	is matri	x us	sing	sing		
transformation m	ethod.						12M	1
		OR						
Form the Z-bus r	matrix for t	he netwo	rk shown	belov	w usi	ng Z-	bus	
building algorithn	n. Take bu	s 1 as the	referenc	e bus	5.			
						2		
	•				/	<u> </u>		
		0.08 + j0.24		- E				

5. The following is the system data for a load flow solution:

The line admittances:

6.

7.

8.

9.

10.

11.

	The line a	dmitta	ances:									
	Bus code			Admitta	ance							
	1–2			2–j8.0								
	1–3			1–j4.0								
	2–3			0.666–	j 2.664							
	The sched	lule o	f activ	e and re	active p	ower	s:					
	Bus code	Ρ	Q	V		Re	mark	S				
	1	_	_	1.06		SI	lack					
	2	0.5	0.2	1 + j0.0)	F	PQ					
	3	0.4	0.3	1 + j0.0)	F	PQ					
	Determine	the	volta	ges at	the enc	of	first	iteration	using			
	Gauss-Se	idel m	nethod	l.						12M	2	2
					UNIT-II	I						
a)	A 3 phase	, 33 k	V, 10	0MVA a	Iternator	has	sequ	ence read	ctance			
	of X1= X ₂ =	= 0.12	2p.u. lf	[:] the ger	erator is	on r	no loa	ad, find th	e fault			
	current wh	nen th	e LL f	ault occu	urs at the	e terr	ninal	s of alterr	ator	6M	3	4
b)	Derive the	e expr	ression	n for the	fault cu	rrent	t, whe	en an unl	oaded			
	alternator	subje	cted to	o LLG fa	ult.					6M	3	3
					OR							
ı	Derive the	e exp	ressio	n for fa	ult curre	ent a	nd v	oltages fo	or L-G			
	fault Analy	/sis w	ith fau	Ilt impedance.							3	2
					UNIT-I\	/						
I	Write sho	ort no	otes	on Syn	chronizir	ng p	ower	coefficie	ent in			
	stability st	udies								12M	4	2
					OR							
ı	Briefly exp	olain a	about	steady s	state sta	bility	dete	rmination	using			
	power-ang	gle cu	rves.							12M	4	2
					UNIT-V	'						
ı	Derive the	swin	g equa	ation.						12M	5	2
			-		OR							
,	Write shor	t note	es on									
	(a) Critical	clear	ring tin	ne (b) C	critical cl	earin	g ang	gle.		12M	5	2
					*** End ***	r						

 a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? b) What is meant by plugging? c) C02 L2 c) What are the advantages in operating choppers at high frequency? d) What are the two types of slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) What are the two types of Slip power recovery schemes? d) Wat schemes? d) Wat schemes of Slip power recovery schemes? d) WINT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. 6M C01 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 6M C01 L4 0R 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms	F	lall Ticket Number :		
III B.Tech. II Semester Regular Examinations June 2023 Power Semiconductor Drives (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Compulsory question Part-A and Part-B) Compulsory question (5 X 2 = 10M) CO BL (Compulsory question) CO		ode: 20426BT	R-20	
Power Semiconductor Drives (Electrical and Electronics Engineering) Max. Marks: 70 Imme: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Computery question) 1. Answer all the following short answer questions (5 X 2 = 10M) CO a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? CO1 L2 b) What is meant by plugging? CO2 L2 c) What are the advantages in operating choppers at high frequency? CO3 L2 d) What are the two types of slip power recovery schemes? CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 D PART-B Marks C0 BL unit UNIT-I Marks C0 BL e) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at 1500 rpm. GM GM C01 <td></td> <td></td> <td></td> <td></td>				
(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) CO BL What is meant by plugging? CO1 L2 What is meant by plugging? CO2 L2 OWhat are the advantages in operating choppers at high frequency? CO3 L2 What are the two types of slip power recovery schemes? CO4 L1 OMarks CO L2 What are the two types of slip power recovery schemes? CO4 L1 Marks CO L2 OMarks Marks CO BL UNIT—I 2 Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BART-B		-		
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) CO 1. Answer all the following short answer questions (5 X 2 = 10M) CO a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? CO1 b) What is meant by plugging? CO2 L2 c) What are the advantages in operating choppers at high frequency? CO3 L2 d) What are the two types of slip power recovery schemes? CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 Marks CO BL Marks CO5 L2 Marks CO BL Marks CO5 L2 Munton two advantages of CSI fed IM drives CO5 L2 Marks CO5 L2 Munton two advantages of CSI fed IM drives CO5 L2 Marks CO BL UNIT-I 2 a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. GM C01 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) CO BL a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? CO1 L2 b) What is meant by plugging? CO2 L2 c) What are the advantages in operating choppers at high frequency? CO3 L2 d) What are the two types of slip power recovery schemes? CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 <i>PART-B</i> Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Marks CO BL Marks CO BL 2. a) Explain the use of freewheeling diode in the converter fed DC Marks CO BL drive take an example of 1 phase half controlled converter. 6M CO1 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate th	Μ		Time: 3 Hours	
 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) CO BL a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? CO1 L2 b) What is meant by plugging? CO2 L2 c) What are the advantages in operating choppers at high frequency? CO3 L2 d) What are the two types of slip power recovery schemes? CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. 6M C01 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 6M C01 L4 OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 12M C01 L4 UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M C02 L2 	No			
PART-A (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M) CO BL a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? CO1 L2 b) What is meant by plugging? CO2 L2 c) What are the advantages in operating choppers at high frequency? CO3 L2 d) What are the two types of slip power recovery schemes? CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 <i>PART-B</i> Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Marks CO BL L1 Image: CO BL 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. 6M CO1 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at 1000 rpm. 6M CO1 L4 OR IMIT-II IMIT-II IMIT-II IMIT-II IMIT-II				
(Compulsory question)1. Answer all the following short answer questions (5 X 2 = 10M)COBLa) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding?CO1L2b) What is meant by plugging?CO2L2c) What are the advantages in operating choppers at high frequency?CO3L2d) What are the two types of slip power recovery schemes?CO4L1e) Mention two advantages of CSI fed IM drivesCO5L2Mart-BMarker five questions by choosing one question from each unit (5 x 12 = 60 Marks) MarksCO3Marker five questions by choosing one question from each unit (5 x 12 = 60 Marks)Marker CO5L2Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)Marker CO5L2Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)Marker CO5L2Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks)Marker COMarker COBUNIT-I2. a) Explain the use of freewheeling diode in the converter fed DCdrive take an example of 1 phase half controlled converter. How it is going to effect the machine performance.6M CO1L3220V, 1500rpm,11.6 A separately excited motor is connected by		3. Answer ALL the questions in Part-A and Part-B		
 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) CO BL a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? CO1 L2 b) What is meant by plugging? CO2 L2 c) What are the advantages in operating choppers at high frequency? CO3 L2 d) What are the two types of slip power recovery schemes? CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 <i>PART-B</i> Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. 6M CO1 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at -1500 rpm. 6M CO1 L4 OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 12M CO1 L4 UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2 				
 a) When do you use controlled converter in the armature circuit and fixed excitation voltage in field winding? b) What is meant by plugging? c) CO2 L2 c) What are the advantages in operating choppers at high frequency? d) What are the two types of slip power recovery schemes? e) Mention two advantages of CSI fed IM drives PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. More A A. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. A. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 	4		00	
 excitation voltage in field winding? b) What is meant by plugging? c) What are the advantages in operating choppers at high frequency? c) What are the two types of slip power recovery schemes? c) What are the two advantages of CSI fed IM drives CO3 L2 c) What are the two advantages of CSI fed IM drives CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 				BL
 b) What is meant by plugging? c) What are the advantages in operating choppers at high frequency? c) What are the two types of slip power recovery schemes? c) What are the two advantages of CSI fed IM drives CO5 L2 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at 1000 rpm. 6M C01 L4 OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 	,	•		12
 c) What are the advantages in operating choppers at high frequency? c) What are the two types of slip power recovery schemes? d) What are the two types of Slip power recovery schemes? c) CO4 L1 e) Mention two advantages of CSI fed IM drives PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 6M CO1 L4 OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 				
 d) What are the two types of slip power recovery schemes? CO4 L1 e) Mention two advantages of CSI fed IM drives CO5 L2 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. 6M CO1 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at -1500 rpm. 6M CO1 L4 OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 12M CO1 L4 UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2 	•			
 e) Mention two advantages of CSI fed IM drives <u>PART-B</u> Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 				
PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. 6M CO1 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque at 1000 rpm b) calculate the firing angle to get rated torque at -1500 rpm. 6M CO1 L4 OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 12M CO1 L4 UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2	•			
Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks CO BL UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. 6M CO1 L3 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 6M CO1 L4 0R 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 12M CO1 L4 UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2			005	LZ
 UNIT-I 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 			= 60 Marks)	
 2. a) Explain the use of freewheeling diode in the converter fed DC drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 			Marks CO	BL
 drive take an example of 1 phase half controlled converter. How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 		UNIT–I		
 How it is going to effect the machine performance. b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 	2. a)	Explain the use of freewheeling diode in the converter fed DC	2	
 b) 220V, 1500rpm,11.6 A separately excited motor is connected by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 		· · ·		
 by single phase fully controlled rectifier with an AC source voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 				L3
 voltage of 230V,50 Hz supply enough inductance is added to ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 	b)			
 ensure continuous conduction for any torque greater than 25% of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 				
 of rated torque. a) what should be the value of the firing angle to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2 				
 to get rated torque at 1000 rpm b) calculate the firing angle for the rated braking torque at -1500 rpm. OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2 				
 the rated braking torque at -1500 rpm. OR Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. UNIT-II Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO1 L2 				
 OR 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 12M CO1 L4 UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2 				14
 3. Describe the use of 3 phase semi converter for the speed control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & thyristor currents. 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO1 L4 				- ·
 control of DC series motor. Illustrate your answer with appropriate wave forms and also derive rms value of source & 12M CO1 L4 UNIT-II Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2 	З		4	
 appropriate wave forms and also derive rms value of source & 12M CO1 L4 UNIT-II 4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO1 L4 	0.			
thyristor currents.12M CO1 L4UNIT-II4.4.Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation12M CO2 L2		-		
4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2		•••••		L4
4. Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 12M CO2 L2				
operation of a D.C shunt motor and explain the operation 12M CO2 L2	4.		q	
				2 L2
		OR		

		Cod	e: 20A2	6BT	
5.		A 220 V DC series motor runs at 1200 rpm and takes an armature current of 100A when driving a load with a constant torque. Resistance of the armature and field windings are 0.05 ohm each. DC series motor is operated under dynamic braking at twice the rated torque and 1000rpm. Calculate the value of	4014		
	,	braking current and resistor. Assume linear magnetic curve.	12M	CO2	L2
6.	a)	Explain the operation of Step-up chopper with circuit diagram & waveforms	6M	CO3	L2
	b)	A 220V, 24A, 1000rpm separately excited DC motor having an armature resistance of 2 is controlled by a chopper. The chopping frequency is 500Hz and the input voltage is 230V. Calculate the duty ratio for a motor torque of 1.2 times rated			
		torque at 500rpm	6M	CO3	L3
-		OR			
1.	a)	With relevant circuit and operating characteristics, explain two quadrant operation of separately excited DC motor	6M	CO3	L2
	b)	A 230V, 1200rpm, 15A separately excited motor has an armature resistance of 1.20hm. Motor is operated under dynamic braking with chopper control, braking resistance has a value of 20 ohm. i) calculate duty ratio of chopper for motor speed of 1000rpm and braking torque equal to 1.5 times rated motor torque. ii) What will be the motor speed for duty ratio of			
		0.5 and motor torque equal to 1.5 times rated motor torque.	6M	CO3	L3
		UNIT–IV			
8.		Discuss in detail speed control of three phase induction motor through stator frequency for the following conditions:			
		(i) Below rated frequency. (ii) Above rated frequency.	12M	CO4	L3
0	\mathbf{c}	OR What is stater voltage control for speed control of induction			
9.	a)	What is stator voltage control for speed control of induction motor drive? List the applications where stator voltage control is used speed control	6M	CO4	12
	b)	Compare CSI and VSI drives		CO4	
	/	UNIT-V		001	20
10.		Describe self control and separate control of Synchronous motor in detail.	12M	CO5	L3
		OR			
11.	,	With relevant circuit and characteristics, explain the operation of Static Kramer drive.	6M	CO5	L2
	b)	Compare slip power recovery scheme with rotor resistance control	6M	CO5	L3
		*** End ***			

	Ha	all Ticket Number :														
	Coc	de: 20A263T			1	1	1]						R-20		
		III B.Tech				-)23			
		P	ower Sy (Electric			-										
	Ma	x. Marks: 70		u u		een	Unic.		JIIIC		91		Tim	ne: 3 Ho	ours	
	Not	e: 1. Question Paper	consists	of tu		**** to (D		A and	1 Da	ret B	2)					
	INOU	2. In Part-A, each			-				110	11 U-L	•)					
		3. Answer ALL th	he question	ons ii				art-l	B							
				(C	<u>P</u> ompu	ART		tion)								
					unpu	1501 y	ques	suon <i>)</i>								
1. /	Answ	ver all the followir	ng short	ans	swer	que	stior	าร	(5 X	2 =	10	(N		СО	BL
a)	Wha	at is the significar	nce of ir	ore	ment	al co	ost?								1	1
b)	Wha	at is the statemer	nt of opt	imiz	atior	n pro	bler	n of	hy	dro-	ther	mal	syste	em?	2	1
c)	Wha	at is the need of a	a speed	cha	inger	·?									3	1
d)	Sigr	nificance of series	s compe	ensa	tion.										4	3
e)	Defi	ine Congestion P	ricing.												5	1
		e				ART					• • •	. –				
	Ar	nswer <i>five</i> question	is by cho	osin	g one	que	stior	n fror	n e	ach	unit ((5 X	12 = 6	0 Marks Marks	-	BL
					U	NIT-	_1							Marks		DL
2.	a)	Explain the va	rious fa	acto				onsic	der	ed	in a	lloc	atina			
	ς,	generation to di											•	6M	1	1
	b)	b) A power system consists of two 200MW units whose input														
		cost data are re	epresen	ted	by th	e e	quat	tions	S:				-			
		$C_1 = 0.03 P_1^2 +$	21P ₁ +	750	Rs/	hou	r,									
		$C_2 = 0.5P_2^2 + 1$														
		If the total rece	•													
		division betwee	n the u	nits	tor tr			eco	no	mic	ope	eratio	on.	6M	1	3
0	``			,		OR										
3.	a)	Derive the exp formula.	pression	n to	or ge	ener	alt	rans	sm	ISSIC	n i	ine	IOSS	6M		0
	b)	A system consis	ete of tu		onor	otin	a nl	onte	• ••	ith f	ر امر	roet	e of	OIVI	1	2
	0)	$C_1 = 0.03P_1^2 + 15$		-	CIICI	am	9 P	anto	, vvi			5031	3 01.			
		$C_2 = 0.04P_2^2 + 2^2$	-													
		The system op	—		econ	omi	c dis	spat	ch	witl	า 12	20M	W of			
		power generation						•								
		loss of plant-2 is	s 0.15.	Find	d he	pena	alty	fact	or	of p	lant	1.		6M	1	3

	Code: 20A263T									
		UNIT–II								
4.		Explain the short-term hydrothermal scheduling problem.	12M	2	1					
		OR								
5.	a)	Explain the hydroelectric power plant model with a neat								
		diagram.	6M	2	1					
	b)	How is optimal generation scheduling of hydrothermal system								
		stated and solved in the power system?	6M	2	2					
		UNIT–III								
6.		Explain LFC of a Two area system in both uncontrolled case								
		and controlled case	12M	3	1					
		OR								
7.		Explain how the integral control scheme results in zero tie-								
		line deviation and zero frequency deviation under steady								
		state condition. Following a step load change in one of the	4014	_						
		areas of a two area LFC system with block diagram.	12M	3	1					
•	、									
8.	a)	Explain the objectives of load compensator.	6M	4	1					
	b)	Explain the effects on uncompensated line under no load								
		conditions.	6M	4	1					
		OR								
9.	a)	What are the merits and demerits of different types of								
		compensation?	6M	4	2					
	b)	Discuss the specification of load compensation.	6M	4	2					
		UNIT–V								
10.	a)	Explain about Restructuring models	6M	5	1					
	b)	Discuss various models of electricity markets.	6M	5	3					
		OR								
11.	a)	Explain Short-time Price Forecasting	6M	5	1					
	b)	Write a shot note on market operations.	6M	5	2					
		*** End ***								

~	all Ticket Number :	R-20		
Coc	Le: 20A26AT III B.Tech. II Semester Regular Examinations June 2023			
	Power System Protection			
	(Electrical and Electronics Engineering)			
Max	<. Marks: 70 T	ime: 3 H	lours	
Note	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
	(Compulsory question)			
. Ans	swer all the following short answer questions $(5 \times 2 = 10 \times 10^{10} \times 10$) (0	ЗL
a) I	Define relay? List out classification of Relays.	С	O1	1
b) l	ist out the advantages of differential relays.	С	:02	1
c) l	Mention different types of faults occur in generators.	C	O3	1
d) \$	State the types of faults in power system.	С	04	1
e) \	Why earth wire is provided in overhead transmission lines?	С	05	1
٨٣	<u>PART-B</u>	60 Mark	(c)	
AI	nswer <i>five</i> questions by choosing one question from each unit (5 x 12 =	Marks	CO	E
	UNIT-I	marito		
. a)	What do you understand by a zone of protection? Discuss various zones of protection for a modern power system.	6M	CO1	L
b)	What do you understand by incorrect operation of the protective relay? What are the reasons of incorrect operation?	6M	CO1	L
	OR			
. a)	Explain the nature and causes of faults. Discuss the consequences of faults on a power system.	6M	CO1	L
b)	What are the various components of a protection system? Briefly describe their functions with the help of a schematic	eM		
	diagram.	DIVI	CO1	L
	UNIT-II Explain the characteristics of over current relays.	12M	CO1	L
	OR			
2)	Explain the operating principle and construction of induction			

	b)	Explain the operation of microprocessor-based inverse over current relay with flowchart.	6M	CO2	L3
		UNIT–III			
6.		Write short notes on: a. Buchholz relay b. Inter-turn fault protection of alternator	12M	CO3	11
		OR		000	
7.	a)	Discuss the protection of restricted earth fault in an alternator with help of neat diagram.	6M	CO3	L2
	b)	Explain Merz-Price protection of star connected alternator stator windings with neat circuit diagram.	6M	CO3	L3
		UNIT-IV			
8.		What is carrier current protection? With neat sketch, discuss the phase comparison scheme of carrier current protection.	12M	CO4	L3
		OR			
9.	a)	Explain over-current protection of feeders. How is the protection system graded with respect to the time of operation of relays for a radial feeder	6M	CO4	12
	b)	What is the importance of bus-bar protection? What are the requirements of protection of lines?	6M		
			OIVI	004	LI
10.	a)	Explain valve type lightning arrester working principle with			
	,	neat sketch.	6M	CO5	L3
	b)	Classify different types of neutral grounding in power system.	6M	CO5	L1
		OR			
11.	a)	Briefly explain the various methods of overvoltage protection of overhead transmission line.	6M	CO5	L2
	b)	Write a short notes on lightning strokes. *** End ***	6M	CO5	L2

	F	lall Ticket Number :							Г			
	C	ode: 20A26DT	<u> </u>	<u>н</u> І						R-20		
			Solar	nester R and W ical and	/ind	Ene	rgy S	Syste		23		
	Μ	ax. Marks: 70	-		****	* * * * *	_			Time: 3 H	ours	
	N	ote: 1. Question Paper 2. In Part-A, each 3. Answer ALL t	question	n carries	oarts (Two art-A <u>PAR</u>	(Part- mark and I	s. Part-B		·B)			
	1 0	ower oll the following	obort one	-	-			1014)	C		
		swer all the following					5 X 2 =	= 10M)	C	-	
		What is solar cell? W								CC	-	
	b		•	arious typ	oes co	ollecto	rs use	d?		CC	-	
	رَّى ام			ind turbin	~~					CC	D3 L ² D3 L ²	-
	(d آھ	State the different ty Mention various ope	•								D3 L D4 L'	
	U,		rating m			кт-в				00)- L	1
		Answer five question	ns by ch	oosing o	-		n fron	n each	unit (5 x 1	2 = 60 Mark	s)	
		-	-	_	-					Marks	CO	BL
-					UN							
2.	a)	Discuss the procedur		-					-	6M	CO1	2
	b)	What is solar pond? I	=xpiain ti	ne main a	appiic: O		of sola	ar pon	0?	6M	CO1	2
3.	a)	Explain in detail abou	it conven	tional sou	_		rav			6M	CO1	2
5.	b)	Explain with neat ske						na type	collectors	6M	CO2	2
4.	,	Discuss different sola			UNI	T–II				6M	CO2	2
4.	a) b)	Discuss the Power El	•			0				6M	CO2	2
	0)		ectionic	Convente		R	Oysie	1113.		OW	002	2
5.		How you are construct	t solar ce	ll, module		array?	Explai	n with	neat diagram	12M	CO2	3
6.	a)	Explain the local impa	act of wir	nd power			>			6M	CO2	2
	b)	Explain history of win				0				6M	CO3	2
					0	R						
7.	a)	What are the environ	mental b	enefits ar	nd pro	blems	of wir	nd ene	ergy?	6M	CO3	2
	b)	Write a short notes of	n Betz Li	mit						6M	CO3	2
					UNI	Γ-Ιν						
8.	a)	Discuss the Converte		•			•		_	6M	CO4	3
	b)	Explain the Generato	r-Convei	rter Confi	•		Wind	Power	r Generation.	6M	CO4	2
9.		Explain different Pow	er electro	onics con		rs invo	lved ir	n wind	systems?	12M	CO4	2
10.		What are the power PV and windsystems	• •		UNI the		onnec	ted sy	vstems of sc	olar 12M	CO4	2
					0	R						
11.		Explain Hybrid and is	olated op	perations		lar PV nd ***	and w	vind sy	vstems?	12M	CO4	2