Hall Ticket Number :			
Code: 20A36AT	R-20		
III B.Tech. II Semester Regular Examinations June 2023			
Automobile Engineering			
(Mechanical Engineering) Max. Marks: 70	me: 3 Hc	ours	
*****		0.0	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks.			
3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question)			
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$		BL	
a) What is a Horn?	1	1	
b) Explain the use of Clutch.	2	1	
c) What are the uses of steering system?	3	1	
d) Write a brief note on anti-theft system	4	1	
e) List the advantages of hybrid vehicles.	5	1	
<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	60 Marks	;)	
	Marks (-	BL
UNIT–I			
2. a) Compare the features and functionalities of 2-stroke and			
4-stroke IC engines.	6M	1	4
b) Write short notes on Bendix drive and the solenoid switch.	6M	1	2
OR			
a) List the objectives of supercharging?	6M	1	2
b) Explain with a neat sketch the working principle of turbo			
charging of a single cylinder engine.	6M	1	3
UNIT–II			
4. Draw and explain with a simple sketch, working of a	4014	_	
constant mesh gear box.	12M	2	4
OR			
5. Explain in detail with neat sketches about Hotchkiss drive	12M	0	0
and torque tube drive. UNIT-III	12101	2	3
6. Discuss the following terms			
a) Pneumatic Braking system and			
b) Vacuum braking system	12M	3	3
,	Page 1	-	J

OR

7.	a)	Discuss a steering linkage for a vehicle with independent suspension.	6M	3	3
	b)	Explain the terms:			
		(i) Camber (ii) Toe-in (iii) King Pin inclination.	6M	3	3
		UNIT–IV			
8.		Explain the working of seat belt system and Antilock braking system (ABS)	12M	4	3
		OR			
9.		How air bag restraint works in automobile and Explain the working of anti-theft system of an automobile.	12M	4	2
10.	a)	List and compare the Advantages and disadvantages of EV compared to ICE vehicles.	6M	5	2
	b)	Write short notes on the history of Hybrid and Electrical Vehicles.	6M	5	2
		OR			
11.		Sketch the layout of electrical vehicle and elaborate the importance of each component in detail.	12M	5	5

Hall Ticket Number :				
Code: 20A36DT				R-20
III B.Tech.	II Semester Reg	jular Examina	ations June 2023	i i
		on & Roboti		
	(Mechanic	al Engineering		T . 0.11
Max. Marks: 70	**:	*****		Time: 3 Hours
Note: 1. Question Paper of 2. In Part-A, each of 3. Answer ALL the	question carries Tw e questions in Part	o marks. -A and Part-B	Part-B)	
		<u>ART-A</u> sory question)		
1. Answer all the follow	· -	•	(5 X 2 = 10M	I) CO BL
a) What is the need for	•	1	(-	, CO1 L1
b) Write down the bend		nanual assen	nbly line?	CO2 L1
c) State the law of rob				CO3 L1
d) What is the applicat	ion of trajectory	planning?		CO4 L3
e) Differentiate the hyd	Iraulic and pneu	matic actuate	or?	CO5 L2
	<u>P</u> /	ART-B		
Answer five questions	by choosing one	question from	each unit (5 x 12	= 60 Marks)
	UI	NIT-I		Marks CO
Describe the element	s of automated	system with	suitable sketch	? 12M CO1
		OR		
Sketch and explain th	e automated flo	ow line with b	ouffer storage?	12M co1
	U	NIT-II		
Solve the problem Consider the followin The number of shifts	g assembly net	work relation	n shown in table	е.

hours is 8. The company aims to produce 40 units of the product per shift. To compute the balancing efficiency of the line.

Operation number	Immediate preceding tasks	Duration (Min)
1.		8
2.	1	3
3.	1	2
4.	1	4
5.	3,4	7
6.	2,7	4
7.	2,4,5	5
8.	4	6
9.	6,8	8

12M CO2 L5

	OR			
5.	Explain the procedure associated with line balancing using Largest candidate rule?	12M	CO2	L1
6.	UNIT–III Discuss the degrees of freedom in Robots and what is significance of the same?	12M	CO3	L2
	OR			
7.	Classify the different types of grippers and explain any one of the same with neat sketch?	12M	CO3	L4
8.	Discuss the D-H rotation with suitable sketch?	12M	CO4	L2
	OR			
9.	Describe the concept of trajectory planning and explain skew motion and straight line motion?	12M	CO4	L2
10.	Discuss the function of the following			
	(i) Resolver (ii) Encodes (iii) Potentiometer	12M	CO5	L2
	OR			
11.	Explain the applications of robot	12M	CO5	L3
	*** End ***			

Code: 20A36DT

Ī	Hal	I Ticket Number :			
L	Coc	le: 20A363T	-20		
		III B.Tech. II Semester Regular Examinations June 2023			
		CAD/CAM (Mechanical Engineering)			
	Max		e: 3 Ho	ours	
	NT /				
	Note	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u> (Compulsory quotion)			
	1 /	(Compulsory question) Answer <i>all</i> the following short answer questions (5 X 2 = 10M)		со	BL
		a) What do you understand by the CPU?			BL1
) Write the parametric form of plane surface?			BL2
) State the meaning of M and G functions?		203	
) Quote the difference between FMS and FMC.		CO4	
	e) What is CAQC?	C	CO5	BL2
	Δr	<u>PART-B</u> Iswer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60	Marke	=)	
				, CO	BL
		UNIT–I			
2.	a)	Discuss about different display devices	6M	CO1	BL2
	b)	What is the most commonly used graphic terminal? Explain its			
		working.	6M	CO1	BL2
		OR			
3.	a)	Compare the traditional and CAD/CAM of product cycle.	6M	CO1	BL2
	b)	Identify the applications of computer in design?	6M	CO1	BL2
		UNIT–II			
4.	a)	Describe the various surface entities that are needed to			
		construct a surface model.	6M	CO2	BL3
	b)	Summarize the importance of surface modeling in computer aided graphics and design.	6M	CO2	BL3
		OR	0	002	BLU
5	a)	What is solid modeling? Compare Bezier representation with			
0.	u)	CSG representation scheme.	6M	C02	BL3
	b)	Paraphrase the parametric equation of a composite surface.			BL3
	- /		2	552	220

		UNIT–III			
6.	a)	How NC machines are are classified? Explain them with neat	014		
		sketches.	6M	CO3	BL2
	b)	With neat sketches, write down the neat procedure for manual	CM		
		part programming. OR	DIVI	CO3	BL2
7		-	014		
7.		Interpret linear and circular interpolations in CNC systems.	6M	CO3	BL2
	b)	Discuss the basic feedback control systems used in CNC	014		
		machines.	6IVI	CO3	BL3
		UNIT-IV			
8.	a)	Write the advantages and disadvantages of OPITZ code			
		system.	6IVI	CO4	BL2
	b)	What is a production Flow Analysis? Discuss various steps	014		
		involved in PFA.	6IVI	CO4	BL3
		OR			
9.		Analyze the following types of layouts in the design of FMS.			
		a) Circular layer b) Linear layers c) Loop layers d) Free			
		layout.	12M	CO4	BL3
		UNIT-V			
10.	a)	Describe about different noncontact optical inspection			
		methods.	6M	CO5	BL2
	b)	Illustrate in detail the scanning laser system used in computer	014		
		aided quality control.	6M	CO5	BL2
		OR			
11.		Show the application and advantages of integration of CAQC			
		with CAD/CAM systems.	12M	CO5	BL2
		*** End ***			

Code: 20A353T III B.Tech. II Semester Regular Examinations June Design of Machine Elements - II (Mechanical Engineering) Max. Marks: 70 ******* Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 101 a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear? e) What is the function of crank in I.C Engine?	R-20-SS 2023		
Design of Machine Elements - II (Mechanical Engineering) Max. Marks: 70 ******* Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10) a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear?	2023		
(Mechanical Engineering) Max. Marks: 70 ******* Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10) a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing: c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear?			
 Max. Marks: 70 ******** Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 101 a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing: c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear?			
******* Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10) a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing: c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear?			
 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10) a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing: c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear? 	Time: 3 Ho	ours	
PART-A (Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10 a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear?			
 1. Answer <i>all</i> the following short answer questions (5 X 2 = 101 a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing. c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear? 			
 a) What are the commonly used materials for flat belts? b) What are the commonly used materials for sliding contact bearing. c) Define static load carrying capacity of ball bearing. d) How the number of teeth affect the design of gear? 			
b) What are the commonly used materials for sliding contact bearingc) Define static load carrying capacity of ball bearing.d) How the number of teeth affect the design of gear?	VI)	со	BL
c) Define static load carrying capacity of ball bearing.d) How the number of teeth affect the design of gear?		CO1	L2
d) How the number of teeth affect the design of gear?	s?	CO2	L2
		CO3	L1
e) What is the function of crank in I.C Engine?		CO4	L2
		CO5	L2
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 1	2 = 60 Marks		
	Mark	s CO	BL
UNIT–I			
a) V-Belt drive consists of three V- belts in parallel on grooved pulleys of			
size. The angle of the groove is 30° and the coefficient friction is 0.12.			
sectional area of each belt is 800 mm ² and the permissible safe stress material is 3MPa. Calculate the power that can be transmitted bet			
pulleys 400 mm in diameter rotating at 960 rpm.	10N	1 CO1	I L4
b) How V-belt is specified?	21		
OR			
a) What is the function of a spring?	2N	1 CO1	I L2
b) A spring loaded safety valve for a boiler is required to blow-off at a p	ressure of		

- 1.5 N/mm², the diameter of the valve is 60 mm. Design a suitable compression spring for the safety valve, assuming spring index to be 6 and 25 mm initial compression. The maximum lift of the valve is 15 mm, the shear stress in the spring material is to be limited to 450 MPa. Take $G = 0.84 \times 10^5$ MPa. 10M CO1 L4 UNIT-II 4. a) Write down Mckee's equation for coefficient of friction/ 2M CO2 L2
 - Design a journal bearing for a centrifugal pump to the following specifications. b) Diameter of Journal: 75 mm, Speed of journal : 1140 rpm. Load on each journal : 11500 N. 10M CO2 L6

OR 5. a) What are the commonly used bearing materials? 2M CO2 L2 b) A 75 mm journal bearing 100 mm long is subjected to 2.5 kN at 600 rpm. If the room temperature is at 24°C, what viscosity of oil should be used to limit the bearing temperature at 55°C? Take d/c=1000.

10M CO2 L6

		UNIT–III			
6.	a)	Define static load carrying capacity of a rolling contact bearing.	2M	CO3	L2
	b)				
		axial load of 5000N, operating at a speed of 1600 rpm for an average life of 5			
		years at 10 hours per day. Assume uniform and steady load	10M	CO3	L6
-	、	OR			
7.	a)	A ball bearing is operating on a work cycle consists of three parts.			
		 i) A radial load of 3000N at 1440 rpm for ¼ cycle ii) A radial load of 5000N at 720 rpm for ½ cycle 			
		iii) A radial load of 2500N at 1440 rpm for the remaining cycle.			
		The expected life of the bearing is 10,000 hrs. Calculate the dynamic load			
		carrying capacity of the bearing.	10M	CO3	L6
	b)	Define dynamic load carrying capacity of rolling contact bearing.	2M	CO3	
		UNIT–IV			
8.	a)	Why dedendum value is more than the addendum value?	2M	CO4	L2
	b)	Design a spur gear pair to transmit a 1.5 kW at 1440 rpm from an electric motor			
		to an air-compressor running at 720 rpm. Take the working life as 10,000 hrs.	10M	CO4	L6
0	-)	OR		004	
9.	a)		2M	CO4	L1
	b)	A pair of helical gears with 23° helix angle is to transmit 2.5 kW at 1000 rpm of the pinion. The velocity ratio is 4:1. The pinion is to be forged steel and the driven			
		gear is be cast steel. The gears are made of 20° full depth involute form and the			
		pinion is to have 24 teeth. Design gear drive.	10M	CO4	L6
		UNIT-V			
10.	a)	What are the commonly used piston materials?	2M	CO5	L2
	b)	Design a cast iron piston for a single acting four stroke diesel engine for the			
		following data:			
		Cylinder bore: 100 mm, stroke length: 120 mm, Max. Gas pressure : 6MPa,			
		BMEP : 0.7MPa, Fuel consumption : 0.24 kg/kW/hr. Distance of the bearing from the center of the crank pin is 350mm, Design stress for crankshaft and crank			
		pin=35 n/mm ² , Design tensile stress for crankshaft and key: 65N/mm ² .	10M	CO5	L6
		OR			
11.	a)	What are the manufacturing methods for the crank shaft?	2M	CO5	L2
	b)	Design an overhang crank shaft for a steam engine to the following			
		specifications. Diameter of the piston: 400 mm, stroke of the piston: 600 mm,			
		Max. steam pressure : 10N/mm ² , the speed of the engine: 100 rpm,	10M	CO5	L6
		ጥጥጥ ሬሶስ ጥጥጥ			

*** End ***

	Н	all Ticket Number :			
		de: 20A361T	R-20		
		III B.Tech. II Semester Regular Examinations June 2023			
		Heat Transfer			
		(Mechanical Engineering)			
	Ма		ne: 3 Ho	ours	
	NT-4	************************************			
	INOL	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 			
		3. Answer ALL the questions in Part-A and Part-B			
		PART-A			
		(Compulsory question)			
. A	۹nsw	ver all the following short answer questions $(5 \times 2 = 10M)$		со	Bl
a)	Writ	e the basic assumptions made in writing Fourier's law of heat conduction.		1	
D)	Wha	at is critical radius of insulation?		2	
C)	Wha	at is the significance of Prandtl number and Grashoff number?		3	
d)	Writ	e about critical heat flux in boiling.		4	
e)		unter flow heat exchanger have better performance compared to parallel flo	w heat		
	excl	nanger" Justify.		5	4
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$)	Marks)		
			Marks	со	В
		UNIT–I			
2.	a)	5			
		i) Fourier's law of heat conduction ii) Newton's law of convection	4M	1	
	b)	Derive the general 3D heat conduction equation in Cartesian coordinates an		4	
		reduce it different forms.	8M	1	
S	2)	OR Evaluin the different types of boundary conditions in heat transfer analysis	414	1	
3.		Explain the different types of boundary conditions in heat transfer analysis.	4M	1	
	b)	Hot air at 100°C is blown over a 3-m by 6-m flat surface at 30°C. If the averag convection heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine the rate of heat transfer coefficient is 60 W/m ² °C, determine transfer coefficient		1	
		transfer from the air to the plate, in kW.		•	
		UNIT–II			
4.	a)	Derive an expression for critical radius of insulation for a cylindrical system.	4M	2	
	b)	A composite hollow cylinder with inner and outer diameters equal to 2 cm and	b		
		4.5 cm is covered with two layers of insulation. First layer of insulation is 1 cr			
		thick and second layer 0.5 cm thick. A fluid with 100°C is flowing through th			
		inner pipe with convection coefficient of 60 W/m ² K. Extreme outer surface of the composite system is exposed to fluid at 40%C with convection coefficient of			
		the composite system is exposed to fluid at 40°C with convection coefficient of 12 W/m ² K. If the thermal conductivities of cylinder, insulation one and insulation			
		two are equal to 10 W/mK, 1.4 W/mK and 0.54 W/mK respectively, calculat			
		the heat transfer rate across the composite cylinder per meter length of th			
		pipe and temperatures at the interfaces of the composite cylinder.	8M	2	
		OR			

5.	a)	What is semi-infinite body? Define the error function and explain its significance in a semi-infinite body in transient state.	4M	2	1
	b)	A leather slab 12 cm thick is initially at 40°C suddenly immersed in a cooling medium at 2°C for which the convection coefficient is 25.6 W/m ² K. Determine the time at which the centerline temperature drops to 10°C and total heat transfer. The properties of leather are: $k = 0.75$ W/mK, $= 1142$ kg/m ³ and $C = 3540$ J/kgK.	8M	2	3
		UNIT–III			
6.	a)	Explain the concept of velocity and thermal boundary for internal flow through a circular pipe.	4M	3	1
	b)	Air at atmospheric pressure and at a temperature of 30°C flows over a heated cylinder of 60 mm diameter whose surface is subjected to a constant temperature at 175 °C. Determine the lost of heat from the cylinder if the air value it 40 m/c	8M	3	3
		velocity is 40 m/s. OR	OIVI	3	3
7.	a)	Compare the variation of velocity and temperature along a vertical plate for the			
		plate under natural convection and forced convection.	4M	3	1
	b)	Consider forced convection through a circular pipe of diameter 'D'. Using Buckingham's theorem, obtain an expression for Nusselt number in terms of		_	
		Re and Pr.	8M	3	2
8.	2)	UNIT-IV Distinguish between filmwise and drepwise condensation	6M	4	1
0.	a) b)	Distinguish between filmwise and dropwise condensation. A heated polished copper plate is immersed in a pool of water boiling at atmospheric pressure. If the surface temperature of the copper plate is maintained at a temperature of 120°C, determine the surface heat flux and the	OIVI	4	I
		evaporation rate per unit area of the plate.	6M	4	3
		OR			
9.	a)	Define the following i) Radiation shape factor, ii) Intensity of radiation	4M	4	1
	b)	Two large parallel planes with emissivities 0.4 and 0.78 maintained at 400°C and 600°C respectively are exchanging heat by radiation. Find the percentage reduction in heat transfer when a polished-aluminum radiation shield of emissivity 0.03 is between them. Also calculate the temperature of the radiation			
		shield.	8M	4	3
10		UNIT-V	414	F	1
10.	a) b)	How are heat exchangers classified? Water at the rate of 4140 kg/h is heated from 30°C to 80°C by an oil having a	4M	5	1
	0)	sp. Heat of 1890 J/kgK. The exchanger is of a counter flow double pipe design. The oil enters at 150°C and leaves at 100°C. Determine the area of the heat exchanger necessary to handle this load if the overall heat transfer coefficient		_	
		is 343 W/m²K.	8M	5	3
11.	a)	OR Discuss the advantages of NTU over LMTD method of heat exchanger design.	4M	5	1
11.	a) b)	A single pass cross flow intercooler is used to cool 2.4 kg/s of air ($C_p = 1020$ J/kgK), at 123 °C with water flowing through the tubes at a rate of 2.56 kg/s. The water enter enters at 30°C and the overall heat transfer coefficient is 200W/m ² K based on the outer tube surface area of 21 m ² . Using the NTU	4111	5	I
		method estimate the exit temperature of water and air. *** End ***	8M	5	3

Code: 20A361T

	На	all Ticket Number :			
	<u> </u>	de: 20A362T	R-20		
	CU	III B.Tech. II Semester Regular Examinations June 2023			
		Metrology & Measurements			
		(Mechanical Engineering)		0.1.160	
	MC	ax. Marks: 70 Til *******	me: 3 Ho	JUIS	
	No	 te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A 			
		(Compulsory question)			
1	. An	swer <i>all</i> the following short answer questions (5 X 2 = 10M)	C	O BL	-
		Compare shaft basis system & hole basis system.	CC	D1 L2	
	-	Write the limitations of sine bar.		D2 L1	
		List out the errors in screw threads.		- D3 L1	
		Differentiate capacitance and resistance.	CC	D4 L2	2
	e)	What are thermocouples?	CC	D5 L1	
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit (5 \times 12 =		-	
			Marks	CO	BL
0	-)	UNIT-I			
2.	a)	A hole and mating shaft are to have a nominal assembly size of 40 mm. The assembly is to have a maximum clearance of 0.15 mm and a minimum clearance of 0.05mm.			
		The hole tolerance is 1.5 times the shaft tolerance.			
		Determine the limits for both hole and shaft: By using			
		(i) Hole basis system (ii) Shaft basis system.	6M	CO1	L3
	b)	Classify limits. Explain them with the help of neat sketches.	6M	CO1	L2
		OR			
3.	a)	Explain the concept of Taylor's Principle in designing of gauges.	6M	CO1	L2
	b)	Differentiate between plug gauges and ring gauges, with neat diagrams.		CO1	
		UNIT–II			
4.	a)	What do you mean by line and end standards of length?			
	,	Write down the characteristics of each of them.	6M	CO2	L2
	b)	Explain the working principle in Dial indicator	6M	CO2	L2

Code: 20A362T

\sim	R
--------	---

		U. C.				
5.	a)	Explain the working principle of Sine Bar with neat sketch.	6M	CO2	L2	
	b)	Illustrate the measurement of external taper of a shaft by				
		using rollers/spheres.	6M	CO2	L2	
		UNIT–III				
6.	a)	Identify various methods of evaluating the primary texture				
		and explain them in detail.	6M	CO3	L3	
	b)	With the help of a neat diagram describe the construction				
		and working of the Talysurf instrument.	61VI	CO3	L2	
OR						
7.	a)	Explain with a neat sketch the measurement of chordal				
		thickness of a spur gear tooth.		CO3		
	b)	Explain the construction and working of Gear tooth vernier.	6M	CO3	L2	
UNIT–IV						
8.	a)	What is a transducer? Explain the working of Variable				
		Capacitance transducer.		CO4		
	b)	With a neat sketch explain the Stroboscope tachometer.	6M	CO4	L2	
OR						
9.	a)	Differentiate between Piezoelectric and Photo electric				
		transducer.	6IVI	CO4	L2	
	b)	Describe the working of any one speed measuring device	CM			
		with a neat sketch.	DIVI	CO4	L2	
4.0	UNIT-V					
10.	a)	What are resistance thermometers? What are the advantages and disadvantages of resistance thermometers				
		(RTD)?	6M	CO5	12	
	h)	With a neat sketch explain the dead weight gauge for	OW	000	LZ	
	5)	pressure measurement.	6M	CO5	12	
		OR	-	000		
11	a)	Explain the principle of measuring shaft torque using optical				
	ч)	torsion meter.	6M	CO5	L2	
	b)	With a neat sketch explain the working principle of Bimetallic		•		
	,	thermometer.	6M	CO5	L2	
		*** End ***				

Page **2** of **2**