<u> </u>	all Ticket Number :	R-20	
Co	de: 20A5M05 III B.Tech. II Semester Minors Regular Examinations May/June 2	2024	
	Computer Organization	-021	
	(Common to CE, EEE, ME and ECE)	_	
Mc	ax. Marks: 70 Tin	ne: 3 Ho	ours
No	te: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks .		
	3. Answer ALL the questions in Part-A and Part-B		
	<u>PART-A</u> (Compulsory question)		
1.	Answer all the following short answer questions $(5 \times 2 = 10M)$	CO	BL
	a) Differentiate between combinational and sequential circuits.	1	L2
	b) What is register transfer language?	2	L1
	c) What are the functions of control memory?	3	L1
	d) What is cache memory?	4	L1
	 e) What is the need of I/O interface module 	5	L1
	PART-B		
А	inswer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$		-
	UNIT-I	Marks	00
a)		6M	1
		6M	1
,	-	••••	
a)			
ω,	•	6M	1
b)		6M	1
,			-
a)		6M	2
b)		6M	2
,			-
a)		6M	2
b)	 d) What is cache memory? e) What is the need of I/O interface module <u>PART-B</u> Answer five questions by choosing one question from each unit (5 x 12 = 60 Ma Mark UNIT-I a) Explain the floating point representation with an example. 61 b) Explain about the error detection codes. OR c) Perform and explain arithmetic addition, subtraction, and overflow detection using fixed point representation. 61 c) Describe the different types of computers. (I) Discuss about the arithmetic logic shift unit with examples. 61 c) Describe the memory reference instructions with an example. 61 (I) Explain about the arithmetic nicro operations. 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 62 63 64 64 64 64 65 66 66 66 67 68 61 68 69 60 60 60 60 61 61 61 61 61 61 61 61 61 62 63 64 64 64 64 65 66 66 66 66 67 68 61 68 61 68 69 60 60 60 61 61 61 61 61 61 61 61 61 62 63 64 64 64 64 65 66 66 66 66 67 68 68 68 68 69 69 60 60 60 60 61 <		2
ы)		0101	Z
	Explain in detail about micro programed Address sequencing		
	Explain in detail about micro programed Address sequencing with block diagram	12M	3

	Cod	e: 20A5N	405
7. a)	Compare the hard wired control unit and micro programmed control unit	6M	3 L3
b)	Explain the operation of a Micro programmed control unit using a diagram	6M	3 L2
8.	Explain how multiplication is done for floating point numbers with flow chart.	12M	4 L2
	OR		
9.	With a neat block diagram explain the virtual memory address translation	12M	4 L2
	UNIT–V		
10. a)	Discuss about Input-Output Interface	6M	5 L2
b)	What is priority interrupt? Discuss about daisy chaining priority interrupt.	6M	5 L2
	OR		
11. a)	Explain about DMA	6M	5 L2
b)	Explain the five stage Instruction pipeline with timing diagram.	6M	5 L2

	На	all Ticket Number :			
	<u> </u>	de: 20A4H10	R-20)	
	CO	III B.Tech. II Semester Regular (Honors) Examinations May/Ju	ne 2024		
		DSP Processors and Architectures			
		(Electronics and Communication Engineering)			
	Mo	ax. Marks: 70	Time: 3 I	Hours	
	No	 te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
		PART-A			
		(Compulsory question)			
I. A	nsw	er all the following short answer questions $(5 \times 2 = 10M)$		CO	B
a)	Dis	cuss the computational complexity of DFT.		CO1	Ľ
b)	List	various sources of error in DSP implementations.		CO2	Ľ
c)	It is	required to find the sum of 64 numbers each represented by 16 bits. How m	any bits		
	sho occ	uld be the accumulator have so that the sum can be computed with urrence of overflow error or loss of accuracy?	•	CO3	Ľ
d)				004	
				CO4	Ľ
e)		e to the samples before chosen FFT applied?	must be	CO5	L
	_				
	Α	nswer five questions by choosing one question from each unit (5 x 12		•	
			Marks	CO	BI
2.	a)	In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) If the following short answer questions $(5 \times 2 = 10M)$ CO If the computational complexity of DFT. CO1 Is the computation all complexity of DFT. CO1 Is the computation all complexity of DFT. CO1 Is the computation have so that the sum can be computed without the nece of overflow error or loss of accuracy? CO3 Is the samples before chosen FFT applied? CO5 L3 Is the samples before chosen FFT applied? CO5 L3 PART-B PART-B Marks CO It is advantages? GM CO1 L1 a signal x(n) = {0, 2, 4, 6, 8} is interpolated using the interpolation filter quence $b_k = \{ 0.5, 1, 0.5 \}$ and the interpolation factor is 2. Determine interpolated sequence y(m). GM CO1 L3 Image: Image: GM CO1 L3 Is signal x(n) = {0, 2, 4, 6, 8} is interpolated using the interpolation filter quence $b_k = \{ 0.5, 1, 0.5 \}$ and the interpolatio			
	b)				
		OR			
3.	a)	What are the sources of errors? Discuss about the A/D and D/A conversion errors.		CO1	Ľ
	b)	Compare the dynamic range and percentage resolution of a signal that uses:			
		(i) 16-point fixed point format.			
		(ii) 32-point floating point format with 14 bit for			
		the mantissa and 8- bit for the exponent.	6M	CO1	Ľ
		UNIT–II			
4.	a)	With a neat block diagram explain about Address Generation Units.	6M	CO2	L
	b)	Write about Data addressing capabilities and explain special addressing modes.	6M	CO2	Ľ
		OR	2		-

		Cod	e: 20A	4H10	
5.	a) b)	Explain the operation of a MAC unit using relevant block diagram.	6M	CO2	L2
	b)	Identify the addressing modes of operands in each of the following instructions (AR stand for address register):			
		(i) ADD #1234h (ii) ADD 1234h			
		(iii) ADD*AR+			
		(iv) ADD offsetaddr [,] *AR	6M	CO2	L1
		UNIT–III			
6.	a)	Explain circular addressing mode and bit reversed addressing mode of a typical TMS320C54XX processor.	6M	CO3	L2
	b)	TMS320C54XX processors. How do you vary the clock frequency in each	сM	<u> </u>	10
		case? OR	OIVI	CO3	LZ
7	a)	Discuss about the different On-chip Peripherals used in TMS320C54XX			
7.	,	with neat diagram.	6M	CO3	L2
	b)	Show the pipeline operation of the following sequence of instructions if the initial value of AR3 is 80 and the values stored in memory location 80,81,82 are 1,2,and 3.			
		LD *AR3+,A			
		ADD #1000H,A			
		STL A, *AR3+			
			6M	CO3	L3
		UNIT–IV			
8.	a)	What is Q-notation? Determine the value of each of the following 16-bit			
		numbers represented using the given Q-notation: 4400h as Q0 number,			
		Q15 number and Q7 number.	6M	CO4	L3
	b)	With necessary equations explain the implementation of Butterfly in DIT FFT algorithm.	6M	CO4	12
		OR	0111	001	
9.	a)	Explain the operation of an interpolation filter using relevant expressions			
	,	and diagrams.	6M	CO4	L2
	b)	With neat block diagram explain the adaptive filters operation. How the filter coefficients updating in the adaptive filter implementation?	6M	CO4	12
			0111	001	
10.	a)	Explain about data transmission formats for the PCM3002 CODEC.	6M	CO5	L2
	b)	Discuss the programming of Multichannel Buffered Serial ports with an example.	6M	CO5	L2
		OR			
11.	a)	Explain the interfacing of flash memory with 54XX DSP.	6M	CO5	L2
	b)	How does DMA help in increasing the processing speed of a DSP process? Explain with diagram.	6M	CO5	L2
		*** End ***	Givi	000	<u> </u>

		Hall Ticket Number :										[1
	C	Code: 20A463T								LI		R-2)	
	I	II B.Tech. II Semester Re	egu	lar 8	sup	ople	me	ntar	y Ex	aminat	ions N	1ay/June	2024	
				igit		-				-				
	٨	Electi) Max. Marks: 70	ronic	cs ar	nd C	omr	nuni	cati	on E	ngineeri	ing)	Time: 3	Hours	
	Г					****	****	¢				nine. s	HOUIS	
	N	Note: 1. Question Paper con			-		`		and I	Part-B)				
		2. In Part-A, each que							4 D					
		3. Answer ALL the c	luest	ions	111 P č			Par	1-Б					
				(Tomm		RT-A	ostic)					
1	Δn	swer all the following short	anew	-	Comp		• -		2 = 10				со	BL
		List any four properties of t		•	uesti	0113	(·	572	1	5101)			CO1	BL1
	,	Calculate the number of c			ultipl	icatio	ons a	and c	omp	lex additi	ions rea	ouired for	001	
	,	1,024 point sequence usin	•		•							1	CO3	BL3
	c)	What is transposition theor	em a	and tr	ansp	osec	d stru	cture	e?				CO2	BL2
	d)	Where is multi-rate digital	signa	l pro	cessi	ing re	equir	ed?					CO2	BL2
	e)	What are the methods use	d for	pitch	dete	ectior	n in n	nusic	al si	gnals?			CO2	BL2
							<u> RT-В</u>				.			
		Answer <i>five</i> questions b	y ch	oosii	ng oi	ne qu	Jesti	on fi	rom	each uni	t (5 x ′	12 = 60 Ma Marks	-	BL
						UNI	т_і					IVIAI KS	00	DL
2.	a)	Investigate the causality a	and s	tabili	ty of	-		ing s	syste	ms.				
	,	i) $h(n) = (2)^n u(n-1)$ iii						0	,					
	۲			`			م ما		l	hu tha	al: <i>ff</i> a <i>n</i> a m	6M	CO5	BL5
	D)	Find the impulse respo equation. $y(n) - 3y(n-1)$									ameren		000	
			.,	y (n	2)	л(л О		221(11	1)			6IVI	003	BL3
3	a)	Find the linear convolution	n of t	he se	ישטא			nd h	(n) บ	sina DFT	-			
0.	α)	$x(n) = \{1, 0, 2\}, h(n) = \{1,$			Jquoi	100 /			(11) G	onig Di i	•			
	L))				``					6M	CO3	BL3
	b)	Find the IDFT of $x(n) = \{2, 2\}$	2.5,1-	- <i>j</i> 2,-	-0.5,1	l + <i>j</i> ().5}					6M	CO3	BL3
						UNI	T–II							
4.	a)	Find the 8-point DFT of the	ne re	al se	quen	ice x	c(n) =	÷{1,2	, 2, 2,	1,0,0,0}	using C	DIT		
		-FFT algorithm.										8M	CO3	BL3
	b)	Find the IDFT of the se	que	nce	X(k)	={1	0,-2	+2 <i>j</i> ,	-2,-	2-2j (using D	DIT		
		algorithm.										4M	CO3	BL3
						0	R							
5.	a)	Find the 8-point DFT of t	he re	eal se	equei	nce .	x(n) =	= {1,1	,1,1,(),0,0,0}	using C	DIF		
		-FFT algorithm										8M	CO3	BL3
	b)	Compute the DFT of the s	seque	ence	x(n)	$= \{0,$	1, 2, 3	B} us	ing [DIT FFT.		4M	CO2	BL2

Code: 20A463T

UNIT–III

6. a) Apply the bilinear transformation to $H_a(s) = \frac{4}{(s+3)(s+4)}$ with T=0.5sec,

and find H(z).

b) Obtain the direct form-I, direct form-II realization of the LTI systems governed by the equation .

$$y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$$

6M CO3 BL3

OR

7. a) Given $H_a(s) = \frac{16(s+2)}{(s^2+2s+5)(s+3)}$.

Find H(z) using impulse invariant transformation. Assume T=0.2 sec.

6M CO3 BL3

CO3 BL3

6M CO3 BL3

b) Using rectangular window technique design a lowpass filter with pass band gain of unity, cutoff frequency of 1000Hz and working at sampling frequency of 5 kHz. The length of the impulse response should be 7.
 6M CO3 BL3

UNIT–IV

- 8. a) Show that the up sampler and down sampler are time-variant systems. 6M
 - b) For the multi-rate system shown in Figure, develop an expression for the output y(n) as a function of the input x(n).

$$x(n) \longrightarrow \uparrow 4 \longrightarrow \uparrow 12 \longrightarrow \uparrow 3 \longrightarrow y(n)$$
 6M CO3 BL3
OR

|--|

- 10. a) Summarize the key points regarding spectral analysis of non-stationary signals. 6M CO4 BL2 b) Discuss the applications where oversampling converters are particularly beneficial, such as audio processing, telecommunications, and instrumentation. 6M CO4 BL2 OR 11. a) Illustrate how can Fourier analysis be used to decompose musical signals into their frequency components? 6M CO4 BL3 b) Explain the role of digital filters, such as decimation filters and interpolation
 - filters, in oversampling converters to reduce noise and improve performance. 6M CO4 BL2

		Hall Ticket Number :			
	C	ode: 20A461T	R-20		
		II B.Tech. II Semester Regular & Supplementary Examinations May	/ June 202	24	
		Embedded Systems			
		(Electronics and Communication Engineering)			
	Μ	Nax. Marks: 70	Time: 3 Ho	Urs	
	N	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two marks.			
		3. Answer ALL the questions in Part-A and Part-B			
		PART-A			
		(Compulsory question)			
		 Answer <i>all</i> the following short answer questions (5 X 2 = 10M) a) List out the On-Chip Peripherals of 8051. 	CO BL CO5 L2		
		b) What is the disadvantage in 7-segment LED interfacing using ports?	CO3 L2 CO1 L2		
		c) Mention the difference between CISC and RISC.	CO3 L1		
		d) Write the IEEE 1394 protocol architecture.	CO4 L2		
		e) What is the purpose of round-robin algorithm?	CO1 L2		
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$			
			Marks	CO	BL
2	2)	UNIT-I	6M	CO1	L2
2.	a) b)	Draw the 8051 Microcontroller architecture and explain its operation in detail. Explain the timer and counter operations of 8051 Microcontroller.		CO1	L2 L2
	0)	OR	OW	001	LZ
3.		Draw and explain the internal architecture of 8051 microcontroller. Also list different	ent		
		applications of 8051.	12M	CO1	L2
		UNIT–II			
4.		With neat sketch, explain seven segment LED interfacing using ports?	12M	CO2	L5
F		OR			
5.		Write an assembly language program for 8051 microcontroller to display message "EMBEDDED SYSTEMS" on LCD. Draw the neat interface diagram		CO2	L2
			12111	002	LZ
6.	a)	What are the various categories of embedded systems? Give Example of ea	ach		
	,	category.	6M	CO3	L5
	b)	Illustrate the recent trends in embedded system.	6M	CO3	L2
7	2)	OR Exploin the software prohitecture of an ambaddad system	сM	<u> </u>	10
7.	a) b)	Explain the software architecture of an embedded system. Describe the process of Development and testing tools for an embedded softwa	6M re. 6M	CO3 CO3	L2 L4
	0)			000	
8.	a)	Explain the working of UART communication interface. Mention the advantages a	ind		
	,	disadvantages of UART.	6M	CO4	L2
	b)	Describe the IEEE 802.11 family of wireless LAN	6M	CO4	L2
0	2)	OR		004	
9.	a) b)	Explain the Ethernet LAN Protocol architecture. Write about I2C and CAN Bus.	6M 6M	CO4 CO4	L5 L2
	5)	UNIT-V	OIVI	004	LZ
10.	a)	Explain how a semaphore can be used for inter-task synchronization.	6M	CO5	L2
	b)	Explain the various type of interrupt service routines with example.	6M	CO5	L4
	,	OR			
11.	,	Write about Real Time Operating Systems	6M	CO5	L2
	b)	Illustrate about Embedded Operating Systems	6M	CO5	L2
		*** End ***			

H	all Ticket Number :															
Cod	de: 20A462T								<u></u>					R-20		
	B.Tech. II Semeste	r Re	gulo	ar &	Sup	ple	men	itary	' Exc	amir	natio	ons M	lay/J	uneź	2024	
							Engi			-		_				
Ma	(Ele 1x. Marks: 70	ectro	onics	anc	d Co	mm	unic	atio	n En	gine	ering	g)	Tim	e:3+	lours	
-						****								0.01	10015	
Not	e: 1. Question Paper 2. In Part-A, each				-	`			nd P a	art-E	8)					
	3. Answer ALL th	-							-B							
				(2	-	PAR'			,							
4					-		y que				()	101	a \	~~	ы	
	Answer all the foll		-				-			•			•	CO	BL	
a)	Write the expres			Cui	-011	neq	luen	Cy I	oru	onni	lan	. moc		CO1	L1	
b)	Write the express	-		aua	lit∨	facto	or of	ac	avit	v res	sona	ator.		CO1		
	List any two appl			-	-				•					CO2		
	Give examples o					-			ube	s.				CO2		
e)	Mention different	cor	npo	nen	ts in	n the	mic	row	vave	ber	nch :	setup).	CO3	3 L1	
					<u> </u>	PAR	<u>Т-В</u>									
A	nswer <i>five</i> question	s by	cho	osin	g on	e qu	estic	on fro	om e	ach	unit	(5 x 1			-	-
						UNI	т і						IVI	arks	CO	E
a)	Derive the ex	nre	ssir	ns				 ieldo	s ir	ר ר	ecta	naul	ar			
uj	waveguide in ca	-										-		6M	CO1	ľ
b)							-	-	•				in			
	case of rectang	ular	wa	veg	uide	e wit	th di	mer	nsio	ns c	of 5	x 2 c	m			
	propagating TM	1 ₁₁ n	nod	e at	f =	9Gł	Ηz.							6M	CO1	I
						O										
a)	•					•	ions				the	fie	ld	014		
L -)	expressions for						-			-			:	81/1	CO1	
b)	Sketch the field a rectangular w	•				= ar		vi a	omi	nan	t mc	aes	IN	4M	CO1	
	a rectangular w	ave	guit			JNI	r_11								COT	
a)	Derive the frequ	ieno	cv o	f re				 avit\	/ res	sona	ator			6M	CO1	I
b)			-			-							ar	0.71	001	I
1	waveguide of				•											
	wavelength. (ii)									-	-			6M	CO1	I
							R									

		Co	de: 20A	462T	
5.		Derive the filed components of TM wave for a circular wave			
		guide.	12M	CO1	L3
		UNIT–III			
6.	a)	Derive S-Matrix for H - Plane Tee junction.	6M	CO2	L2
	b)	A 100 W power source is connected to the input of a directional coupler with coupling factor = 20 dB, Directivity=60 dB and an insertion loss of 0.8 dB. Find output power at the through, coupled and isolated ports. Assume all ports to be matched	6M	CO2	L4
		OR			
7.	a)	Derive S-Matrix for magic Tee junction.	6M	CO2	L4
	b)	An isolator has an insertion loss of 0.5 dB and an isolation of 30dB. Determine the scattering matrix of the isolator if			
		the isolated ports are perfectly matched to the junction.	6M	CO2	L3
		UNIT–IV			
8.		Using velocity and current modulation, explain the operation of a two-cavity Klystron Amplifier.	12M	CO2	L2
		OR			
9.	a)	Discuss about classification of microwave tubes.	ЗM	CO2	L1
	b)	Explain the process of bunching in a cavity magnetron.	9M	CO2	L2
		UNIT–V			
10.	a)	Describe in detail about Gunn Oscillation Modes.	8M	CO2	L2
	b)	Determine the GLabdet Count Coscillation We does be able to the GLabdet Count of the type Galas Gunn diode if electron density $n = 10^{10}$ cm ⁻³			
		electron density at lower valuey $n_l = 10^{10} \ cm^{-3}$,			
		electron density at upper valley $n_u = 10^8 \ cm^{-3}$			
		mobility in lower values $\mu_l = 8000 \ cm^2/V - s$,			
		mobility in upper value $T = \frac{1}{200} k$.	484		
		at temperature 300	4111	CO2	L3
	-)	OR Drow the banch acture for manageming law V(C)//D and eveloin			
11.	a)	Draw the bench setup for measuring low VSWR and explain its operation.	8M	CO3	13
	b)	Determine the attenu: the given attenuat		000	LU
	~)	power meter reads $10^{\text{ation for}}_{mW \text{ with}}$ attenuator and $26^{\text{tor, if the}}_{mW \text{ after}}$ removing it.	4M	CO3	L2
					-

ſ	Hal	I Ticket Number :			
l		e: 20A46CT	R-20		
		Tech. II Semester Regular & Supplementary Examinations May	/ June 2	024	
		Radar Engineering			
I	Лах.	(Electronics and Communication Engineering) Marks: 70	Time: 3 H	Hours	
ľ	Note:	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 			
1.7	Ansv	ver all the following short answer questions $(5 \times 2 = 10)$	VI)	со	BL
		efine integration of Radar pulses	,	01	L1
k) W	/hat is the need of frequency modulation in Radars	C	02	L2
(c) Li	ist the limitations of MTI radar	C	03	L2
C	V (k	/hat is the need of Tracking with Radar	C	04	L2
e	e) D	efine noise temperature	C	05	L1
	•	PART-B			
	Ans	swer <i>five</i> questions by choosing one question from each unit (5 x 12	2 = 60 Mar Marks	ks) CO	BL
		UNIT–I	marite	00	DL
2.	a)	Interpret the Radar range equation with Integration o	f		
		Radar pulses.	6M	CO1	L2
	b)	Find the range of Radar whose transmitted power is 160KW, cross sectional area of the target is 25 sq. m. The minimum power received is 1mw. The power gain of the	Э		
		antenna used is 900 at the operating frequency of 2GHz.	6M	CO1	L1
		OR			
3.	a)	Illustrate cross sectional area of the target influences or			
		received signal of Radar system.		CO1	L2
	b)	Develop the basic block diagram of Radar system and			
		Outline its operation.	6IVI	CO1	L3
1	2)	UNIT–II Interpret the operation of CW radar with non-zero IF in the	2		
4.	a)	receiver with block diagram.		CO2	14
	b)	What is the need of isolation between Transmitter and		002	
	/	Receiver in CW Radar		CO2	L2

Code: 20A46CT

5	a)	Identify the process for FM-CW Radar-Range and			
0.	u)	Doppler measurements	8M	CO2	L2
	b)	List the applications of CW radar.		CO2	
	- /	UNIT-III		002	
6	a)	Find the 3 lowest blind speeds of MTI radar operates at			
0.	u)	4GHz with PRF of 1000 PPs.	6M	CO3	L3
	b)	Define Blind Speed and what is the use of delay line			
		chancellor.	6M	CO3	L1
		OR			
7.	a)	Justify, does the Doppler effect occurs in moving target or			
		not.	4M	CO3	L2
	b)	Construct the MTI Radar with Power amplifier transmitter.	8M	CO3	L3
		UNIT–IV			
8.	a)	List the types of tracking Radar systems.	4M	CO4	L1
	b)	Enumerate the amplitude comparison monopulse with			
	-	simple block diagram.	8M	CO4	L2
		OR			
9.	a)	Compare Monopulse tracker and Conical scan tracker.	6M	CO4	L4
	b)	Explain the basic principle of continuous angle tracking.	6M	CO4	L2
		UNIT–V			
10.	a)	Distinguish between the matched and non-matched filters.	6M	CO5	L4
	b)	Write note on Radar Displays.	6M	CO5	L3
	,	OR			
11.		Explain the principle and characteristics of a matched filter			
		and derive the expression for its frequency response			
		function.	12M	CO5	L2
		*** End ***			

	II Ticket Number :											D O	•	
Cod	e: 20A4H05											R-2	0	
	III B.Tech. II Seme	ester R	-	-		-		nina	itior	ns N	lay/J	une 202	4	
						of Thir	-	_						
Max	(Ele . Marks: 70	ctronic	cs an	a Co	omm	unica	tion	Eng	gine	erin	g)	Time: 3	Hour	ç
Max	. Marks. 70			×	****	****						nine. o	1001.	3
Note	: 1. Question Paper							Pa	rt-B)				
	2. In Part-A, each o	-						_						
	3. Answer ALL th	e questi	ions i				art-B	8						
				-	PAR		•							
				-	-	y quest		- \/	•		、	~~~		
1.	Answer all the follow	wing sho	ort an	swer	ques	tions	(5 X .	2 = 1	10M)	CO	BL	
	a) Define IOT?			.T 0								CO1	L1	
	b) What is the role					- +0						CO2	L1	
	c) List the various				Torm	nat?						CO3	L1	
	d) Outline the pyth			5?								CO4 CO5	L2	
	e) What is an IOT	uevice			PAR	гр						005	L1	
Δr	swer five question	s hy ch	oosir				fror	n o:	ach	unit	(5 y 1	2 – 60 Ma	rke)	
		3 by ch	0031	ig oi	ic qu	CSUO	1 11 01	ii ce		um	(5 × 1	Marks	CO	
					UNIT	 I						Marks	00	
2.	Compare physical	desian	with I	oaica				?				12M	CO1	
		5		3	OR	-	-							
3.	List and explain ar	ny two l	OT er	nablir			gies?					12M	CO1	
	·	,			UNIT									
4. a)	Compare IOT with	M2M C	Comm	unica	ation							6M	CO2	
b)	Outline the role of	NFV in	IOT?									6M	CO2	
					OR	2								
5.	Summarize the v	rarious	steps	invo	olved	in th	e IO	Тр	latfo	rm	desigr			
	methodology?											12M	CO2	
2	With a post skatch		in tha	· ·			SI-01/1		10			1014	CO^{2}	
6.	With a neat sketch	і, ⊏хріа	in the	arch	OR			PAN	1 :			I ZIVI	CO3	
7.	Explain Wireless F	REID inf	rastru	cture			amnl	2م				12M	CO3	
••							anpr					1 2111	505	
8.	Explain the concept	ot of dat	a stru				ol flo	w in	Pytl	hon	and its	5		
	relevance in IOT a	applicati	on de	velop	omen	t.						12M	CO4	
					OR	2								
9.	Outline the importa				•		•••			•				
	python is used in h	andling	the fi				catior	ns? (Give	Exa	mple?	2 12M	CO4	
_	0 - ·	_ .		· · · · ·	UNIT								o o -	75
).	Compare Raspber	rry Pi wi	th Arc	duino								12M	CO5	
4			•t ·	Acat	OR		-	ا- م	a -1	ates				
1.	Summarize the p	rocess	orin	iterta	ICING	senso	irs a	nd	actu	ator	s with			
	Raspberry Pi with				Ŭ							12M	CO5	

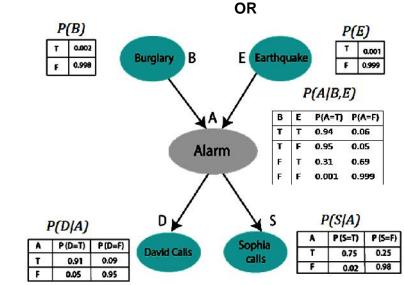
	all Ticket Nur			[R-20		
Co	de: 20A33M	.02 h. II Seme	stor Mino	rs Poo	ular Evar	ninations		n = 2024		
	III D.IEC			-		e Learnir				
			(Commor				'9			
Ма	x. Marks: 70		(,,	00 0 _ ,		Time: 3 I	Hours	

Not	te: 1. Questic	.		.	•	nd Part-B)				
		-A, each que r ALL the c				t-B				
	3. 7 m 5 w 0.									
					<u>RT-A</u> ory questio	n)				
	1. Answer	all the follow		-	vi	(5 X 2 :	= 10M)	CO BL	_	
		ine supervis	•			,	,	CO1 L1		
		at is loss fur	•					CO2 L2		
	c) Def	ine conditior	nal probabil	ity.				CO3 L1		
	d) What	at is the met	ric to meas	ure the	uniformity	of target fu	nction?	CO4 L2	2	
	e) Def	ine Agent.			-	-		CO5 L1		
		-		PA	RT-B					
	Answer five	e questions	by choosing			n each unit	(5 x 12 =	60 Marks)	
	Ũ	-	•	-						
				[Marks	CO	
、	. .			UN					004	
a)		the issues							CO1	
b)		perspective		ie learn	ing. How o	does nypoti	nesis spa		CO1	
	represented		, learning:	0	R			OW	001	
	Apply the	Candidate	-limination	-		e aiven set	of trainir	าต		
		Placed is		•		•		•		
	boundary h	ypothesis fo	or the given	datase	t.					
	verbal	technical	aptitude	test1	test2	CGPA	Placed			
	Better	Good	Medium	High	High	Excellent	Yes			
	Better	Good	High	High	High	Excellent	Yes			
	Normal	Medium	High	High	Medium	Medium	No			
	Better	Good	High	High	High	Medium	Yes	12M	CO1	
				UNI	T–II					
a)		e artificial n			•		nidden lay			
	and binary	class output	: layer. Exp	lain the	torward pr	opagation.		6M	CO2	

b) Explain the various activation functions in machine learning. 6M CO2 L2

5. Apply the ID3 decision tree algorithm to classify the given dataset. All leaf nodes should be classified as approved **Yes** or **No** in a tree. It states that advertisement is broadcasting proposal is approved or not.

Price	Newspaper	Youtube	FB	ΤV	Approved
30-40L	Yes	Yes	No	No	Yes
30-40L Yes		No	Yes	Yes	Yes
40-50L	Yes	No	No	Yes	No
30-40L	Yes	Yes	Yes	Yes	Yes
20-30L	No	No	No	No	No
30-40L	Yes	No	No	Yes	No
50-60L	Yes	No	No	No	Yes
40-50L	No	No	No	Yes	No
30-40L	Yes	Yes	No	No	Yes
20-30L	No	Yes	No	Yes	No


12M CO2 L3

UNIT–III

- 6. a) Apply Bayes theorem to find Maximally A Posteriori hypothesis from hypotheses space.
 - b) Describe the Minimum Description Length principle.

7.

a)

Apply the BBN to calculate the probability that alarm has sounded, but there is neither a burglary, nor an earthquake occurred, and David and Sophia presumed that they heard the alarm sound.

b) Describe all the necessary steps of fitness function evaluation using genetic algorithm.
 6M

UNIT-IV

- 8. a) Discuss the sequential covering algorithm in learning rules. CO4 6M Summarize the PROLOG-EBG properties. CO4 b) 6M OR 9. a) Explain the first order inductive learning rule. 6M CO4 Discuss the inverted resolution rule learning. CO4 b) 6M UNIT-V CO5 10. Illustrate the markov-decision process in learning the environment. 6M a) Differentiate the inductive and analytical learning. 6M CO5 b) OR Summarize the components and its features of reinforcement learning. 6M a)
- a) Summarize the components and its features of reinforcement learning.
 b) How does the knowledge used to alter the search objective?
 6M CO5 L2
 6M CO5 L2
 6M CO5 L2

- 6M CO3 L3 6M CO3 L2

6M

CO3

CO3

L3

L2

L2

L2

L2

L2

L2

L2