Hall Ticket Number :					
Code: 20A562T			R-20		
	•	mentary Examinations Ma	y/June :	2024	
	_	ata Warehousing			
Max. Marks: 70	omputer science	e and Engineering)	Time: 3 H	Hours	
N 4 0 1 5	****				
Note: 1. Question Paper con 2. In Part-A, each que 3. Answer ALL the q	estion carries Two n	narks.			
	<u>PAR'</u> (Compulsory				
. Answer all the follow		er questions (5 X 2 = 10M	I) C	O BL	
a) Describe about data	•	• `	CO		
b) What is data cube?	J		CO		
c) List out methods to i	mprove accurac	v of classification.	CO		
d) What is a dendrogra	•	,	CO		
e) Summarize about sp		g	СО)5 L1	
,	PAR ⁻				
Answer five questions by	/ choosing one qu	estion from each unit (5 x 12		-	
	UNIT	<u> </u>	Marks	СО	E
a) Illustrate Data inte			6M	CO1	L
b) Explain the Major		•	6M		L
b) Explain the Major	0 O	G	Olvi	COT	
a) What is data clea	_	e the approaches to fil	I		
missing values.	armig. Describe	e the approaches to in		CO1	L
b) Explain what kind	of data can be r	nined.	6M		L
, , , , , , , , , , , , , , , , , , , ,	UNIT			00.	-
a) A database has fo	our transactions	s. Let min_sup=60% and	J		
min_conf=80%.					
TID	Date	items_bought			
T100	10/15/99	$\{K,A,D,B\}$			
T200	10/15/99	{D,A,C,E,B}			
T300	10/19/99	{C,A,B,E}			
T400	10/22/99	{B,A,D}			
Find all frequent ite	J			CO2	
b) Write the difference	es between Ol ⁻	TP and OI AP	6M	CO2	- 1

OR

2.

3.

4.

Code: 20A562T

5.	a)	Explain the components in data warehouse architecture models.	6M	CO2	L2
	b)	Illustrate FP growth algorithm with an example		CO2	 L3
	D)	UNIT-III	Olvi	002	LJ
6.	a)	Write about Rule Based classification	6M	CO3	L2
	b)	Why is tree pruning useful in decision tree induction? What is a drawback of using a separate set of tuples to evaluate	GN4	222	
		pruning?	OIVI	CO3	L2
		OR			
7.	a)	What is meant by Bayesian classifier? How Bayes theorem is used for classification.	6M	CO3	L2
	b)	Discuss how information gain is used in decision tree induction.	6M	CO3	L2
		UNIT-IV			
8.	a)	Compare k-means with k-medoids algorithms for clustering.	6M	CO4	L2
	b)	Discuss about key issues in Hierarchical clustering.	6M	CO4	L2
		OR			
9.	a)	Discuss the similarity measures and distance measures			
		frequently used in clustering the data.	6M	CO4	L2
	b)	What are the challenges of outlier detection	6M	CO4	L2
		UNIT-V			
10.	a)	Discuss the principles underlying text clustering.	6M	CO5	L2
	b)	What are the different types of web mining? How is web usage mining different from web structure mining?	6M	CO5	L2
		OR			
11.		Explain in detail about mining complex data types	12M	COS	L2
		*** End ***	1 2111	003	LZ

ŀ	Hall Ticket Number:	R-20		
	ode: 20A563T			
Ш	B.Tech. II Semester Regular & Supplementary Examinations Ma	y/June 2	024	
	Internet of Things			
٨٨.	(Computer Science and Engineering) ax. Marks: 70	Time: 3 H	∩ı ırç	
1711	**************************************	11116.511	0013	
No	 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
	PART-A (Compulsory question)			
	1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)	CO BI		
	a) Describe the needs for Communication APIs in IOT?	CO1 L		
	b) Write the difference between IoT and M2M?	CO2 L3		
	c) What is the difference between stub and transit networks?	CO3 L		
	d) Define Functions of Python?	CO4 L		
	e) Explain about Exemplary device?	CO5 L2		
	PART-B	000 2	_	
,	Answer <i>five</i> questions by choosing one question from each unit (5 x 12	= 60 Mark	s)	
	. , , , , , , , , , , , , , , , , , , ,	Marks	CO	BL
	UNIT-I			
	Explain about Logical Design of IoT in detail?	12M	CO1	L2
	OR			
a)	Discuss Home Automation Application in IoT?	6M	CO1	L2
b)	Discuss about IoT Level 1 and level 3 with example?	6M	CO1	L2
,	UNIT-II			
a)	Explain about Purpose and Requirement Specification in IoT desig methodology?	n 6M	CO2	L2
b)	What are the differences between Machines in M2M and Things in IOT?		CO2	L1
/	OR			
	Describe the following steps involved in IoT system design methodology:			
	(i) Process Specification (ii) Domain model specification.	12M	CO2	L2
	UNIT-III			
a)	Discuss various protocols used in Wireless Personal Area networks?	6M	CO3	L2
b)	Write short notes on basic 6LOWPAN format. ?	6M	CO3	L3
	OR			
a)	With a neat sketch explain about Wireless RFID Infrastructure?	6M	CO3	L2
b)	Describe the features of uIPv6?	6M	CO3	L2
	UNIT-IV			
a)	Write short notes on Python Data types?	6M	CO3	L3
b)	Discuss about File handling in python?	6M	CO3	L3
	OR			
	Explain the various Control Flow statements in python and write the difference between Python module and Package? UNIT-V		CO4	L2
a)	Write a snippet for simple LED Blink using Raspberry Pi?	6M	CO5	L2
b)	Explain in detail about Exemplary device: Raspberry Pi?	6M	CO5	L2
,	OR	2		_
	Explain about Raspberry Pi board and discuss about the Programmin Raspberry Pi with python with an example? *** End ***	g 12M	CO5	L2

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

	Hall Ticket Number :			
	Code: 20A3062T	R-2	20	
	Il B.Tech. II Semester Regular & Supplementary Examinations Mo	y/Jun	e 2024	4
	Machine Learning			
٨	(Common to CSE, AI&DS and AI&ML) Max. Marks: 70	Time:	3 Hour	S
N	******** Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
•	2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
1. <i>A</i>	Answer all the following short answer questions $(5 \times 2 = 10)$	V)	CO	BL
a)	Define what constitutes a well-posed learning problem in the constitutes a well-posed learning problem in the constitutes as well-posed learning problem in the constitute problem i	ontext		
	of machine learning.		CO1	L1
•	Identify two common issues encountered in decision tree learning	ng.	CO2	L1
,	Define the minimum description length principle.		CO3	L1
•	Discuss two advantages of explanation-based learning (EBL).		CO4	L2
e)	Discuss the concept of generalizing from examples in the contreinforcement learning.	ext or	COF	1.0
	PART-B		CO5	L2
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12	: = 60 M	arks)	
		Marks	CO	BL
2 2	UNIT-I Describe the Find-S algorithm for finding a maximally			
2. 0	specific hypothesis consistent with the training data.			
	Explain the iterative process of Find-S and how it			
	progressively refines the hypothesis space based on			
	observed examples.	6M	CO1	L2
b	O) Consider a concept learning task where the attribute			
	space consists of three binary attributes: A, B, and C.			
	The training data is as follows: Example A B C Target Concept			
	1 0 1 1 Positive			
	2 1 0 0 Negative			
	3 1 1 0 Positive			
	Apply the Find-S algorithm to find the maximally specific			
	hypothesis.	6M	CO1	L3
0 -	OR			
3. a	,			
	and discuss its significance in guiding hypothesis search and generalization. Explore different forms of inductive			
	bias.	6M	CO1	L2

Code: 20A3062T

b) Discuss the computational complexity of version spaces and candidate elimination and strategies for efficient hypothesis search in large hypothesis spaces.

6M co1

L2

L2

UNIT-II

4. a) Consider a dataset with the following attributes (A, B, C) and target class (Positive or Negative):

Example

	Α	В	С	Target
1	0	1	1	Positive
2	1	0	0	Negative
3	1	1	0	Positive

Calculate the information gain for each attribute (A, B, C) based on the target variable.

8M CO₂ L₃

b) Describe the backpropagation algorithm for training multilayer neural networks.

4M co2

OR

5. Given a feedforward neural network with one input layer (2 neurons), one hidden layer (3 neurons), and one output layer (1 neuron), and the following weights and biases:

Input Layer:

- Neuron 1: w1 = 0.5, w2 = 0.3, b1 = 0.2

- Neuron 2: w3 = 0.1, w4 = 0.4, b2 = -0.1

Hidden Layer:

- Neuron 1: w5 = 0.2, w6 = -0.3, b3 = 0.4

- Neuron 2: w7 = -0.1, w8 = 0.5, b4 = -0.2

- Neuron 3: w9 = 0.3, w10 = -0.2, b5 = 0.1

Output Layer:

- Neuron 1: w11 = 0.3, w12 = -0.1, b6 = 0.5

If the target output for a given input is 0.7, and the actual output of the network is 0.65, calculate the error gradients for each weight and bias using the backpropagation algorithm.

12M CO2 L3

UNIT-III

6. a) Compare different models of evolution and learning used in GAs.

6M co₃ L₅

b) Explain strategies for parallelizing GAs to improve efficiency and scalability.

6M CO3 L2

OR

7. a) Discuss how Bayes' theorem is applied in Bayesian learning to make predictions.

4M CO₃ L₂

Code: 20A3062T

b) In a binary classification problem, the prior probability of the Positive class is 0.4. Given a training dataset with 80 instances, where 45 instances belong to the Positive class and 35 instances belong to the Negative class, calculate the maximum likelihood estimate of the class conditional probabilities P(A=1|Positive) and P(A=1|Negative). 8M co3 L3 **UNIT-IV** 8. a) Discuss the FOIL (First-Order Inductive Learner) algorithm for learning sets of first-order rules. 6M CO4 L2 b) Compare FOIL with other rule learning algorithms in terms of efficiency and scalability. 6M co4 L5 OR 9. a) Explain the concept of sequential covering algorithms 6M CO4 and their role in learning sets of rules. L2 b) Describe the sequential covering process and how it iteratively refines rule sets to cover different instances in the dataset. 6M CO4 L2 UNIT-V 10. a) Compare and contrast RL with traditional dynamic programming approaches 6M CO5 L5 b) Define TD learning and how it combines elements of 6M CO5 dynamic programming. L3 OR 11. a) Describe the Q-learning algorithm and how it learns the value of state-action pairs. 6M CO5 L3 b) Explain how Q-learning updates Q-values based on observed rewards and future state-action values. 6M CO5 L3 *** End ***

Hall Ticket Number: R-20 Code: 20A33M04 III B.Tech. II Semester Honors Regular Examinations May/June 2024 Natural Language Processing (Computer Science and Engineering) Max. Marks: 70 Time: 3 Hours ****** Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries **Two marks**. 3. Answer ALL the questions in Part-A and Part-B **PART-A** (Compulsory question) 1. Answer **all** the following short answer questions ($5 \times 2 = 10M$) CO BL a) List the phrase structures of English Syntax CO1 L1 b) Define parsing. CO₂ L₁ c) Define Context Free Grammar. CO₃ L₁ d) What is semantic and logical form? CO4 L1 e) List the possible approaches of machine translation. CO₅ L₁ **PART-B** Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$) Marks CO BLUNIT-I a) Explain evaluating language understanding system. 2. 6M CO1 L2 Discuss representations and understanding of language systems. 6M CO1 L2 OR a) List the applications of Natural Language Understanding. 3. Explain. 6M CO1 L1 b) Explain Verb Phrases and simple sentences in English syntax. 6M CO1 L2 UNIT-II a) Explain feature systems and augmented grammars. 4. 6M CO₂ L₂ b) What is Top-Down parser? Explain with example. 6M CO2 L2 OR a) Define Bottom-up parser. Explain with example. 6M CO2 L2 b) Explain augmented transition network with example. 6M CO₂ L₂

5.

Code: 20A33M04

UNIT-III

6.	a)	How can you be handling questions in context free			
		grammars? Explain.	6M	CO ₃ L ₁	
	b)	Explain Gap Threading.	6M	C03 L2	
		OR			
7.		Write an algorithm for shift-reduce parsers and draw			
		transition graph and obtain oracle table for the given			
		grammar.			
		2.1 S \rightarrow NP VP 2.3 VP \rightarrow AUX V NP			
		2.2 NP \rightarrow ART N 2.4 VP \rightarrow V NP	12M	CO3 L3	
		UNIT-IV			
8.		List the types of language models. Explain	12M	CO4 L1	
		OR			
9.	a)	How can you be encoding ambiguity in the logical form?			
	,	Explain.	6M	CO4 L1	
	b)	Explain verbs and states in logical form.	6M	CO4 L2	
	,	UNIT-V			
10.	a)	Explain how to build a summarizer.	6M	CO5 L2	
	b)	Discuss MLIR.	6M	CO5 L2	
	·	OR			
11.	a)	List different approaches to summarization. Explain.	6M	CO5 L1	
	b)	Discuss document preprocessing in detail.	6M	CO5 L2	
	,	*** End ***			

	Hall Ticket Number :	R-2	0	
	ode: $20 ext{A}56 ext{BT}$ II B.Tech. II Semester Regular & Supplementary Examinations May	/ lune	2024	
	Cryptography and Network Security	, 30110	2021	
	(Computer Science and Engineering)			
Μ	ax. Marks: 70	Time: 3	3 Hours	
N	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
11	2. In Part-A, each question carries Two marks .			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
4	(Compulsory question)	0	O DI	
	. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)		O BL	
	a) Define security attacks.	C		
	b) What is Digital signature?		O2 L1	
	c) What is the purpose of X.509 standard?		O3 L1	
	d) What do you mean by Security Association? Specify the parameters		24 14	
	identifies the Security Association.		O4 L1	
	e) Define Intruders.	C	O5 L1	
	<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12	- 60 M:	arke \	
	Answer Tive questions by choosing one question from each unit (3 x 12	Marks	CO	ВІ
	UNIT-I	iviains	CO	וט
	Explain the OSI security architecture and its relevance in modern network security.	12M	CO1	
•	OR	12111	001	,
•	Define attack surfaces and explain how they represent the points of			
,	vulnerability in a system or application.	12M	CO1	I
	UNIT-II			
. a)	Explain the fundamental principles of symmetric encryption.	6M	CO2	I
b)	How does symmetric encryption differ from asymmetric encryption, and what			
	are its key advantages and limitations?	6M	CO2	l
	OR			
	In an RSA cryptosystem, a participant uses two prime numbers p = 3 and			
	q = 11 to generate his public and private keys. If the private key is 7, then how will the text AITS be encrypted using the public key?	12M	CO2	I
	UNIT-III	12111	002	•
	Explain Kerberos authentication mechanism with suitable diagram?	12M	CO3	ı
	OR			
	Explain the operational description of PGP.	12M	CO3	ı
•	UNIT-IV			-
	Describe the SSL Architecture in detail	12M	CO4	ı
	OR			
	Identify and explain the main participants involved in a Secure Electronic			
	Transaction (SET) process.	12M	CO4	I
	UNIT-V			
	Explain any two approaches for intrusion detection.	12M	CO5	I
	OR			
. a)	What are the types of firewalls? Explain	7M	CO5	L
b)	Explain the characteristics of firewall.	5M	CO5	L
	*** End ***			

	Hall Ticket Number :		\neg	
C	Code: 20A561T	R-20		
	III B.Tech. II Semester Regular & Supplementary Examinations May / Ju Compiler Design (Computer Science and Engineering)	Jne 202	4	
٨	, , ,	ne: 3 Hou	Jrs	
N	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B			
	PART-A (Compulsory question)			
1.	Answer all the following short answer questions $(5 \times 2 = 10 \text{M})$	СО	BL	
а	a) Discuss the process of lexical analysis phase.	1	L2	
b	b) When do we say a grammar is ambiguous?	2	L3	
C	c) Discuss the purpose of YAAC.	3	L4	
C	d) Discuss the need of storage allocation for arrays.	4	L2	
Э	e) List down the different forms of code generated by the final phase			
	the compiler.	5	L3	
	$\frac{PART-B}{Answer five \text{ questions by choosing one question from each unit (5 x 12 = 60 M)}$	farks)		
	This weight questions by choosing one question from each time (5 x 12 = 00 fr.	Marks	СО	BL
	UNIT-I			
2.	Divide the following code segment: float x,y; /* obtain values x and y from user */ scanf("%d%d",&x,&y); x = x*y; printf(" result is %d",x); /* result printed in console*/			
	into appropriate lexemes. Which lexemes will get associated lexical values? What are those values?	l 12M	1	L2
	OR			
3.	Explain in detail about various phases of a compiler. Explain each phase in detail with suitable example. UNIT-II	12M	1	L2
4.	Construct LL(1) parsing table for the given grammar and validate the string aa+bb using the generated parsing table. S A + B A aA a B bB b	9 12M	2	L4
	OR		_	
5. a		6M	2	L3
b	i. Eliminate left recursion for the following grammar S Sab Ab Ba A AaB Bab ab B Baa aba ii. Eliminate left factoring from the following grammar. S ABCa ABC AB A aabA aa B bbaB bba bb	1 6M	2	L3

Code: 20A561T

UNIT-III

```
6.
       Compare and discuss SLR, CLR and LALR, discuss advantages
       and disadvantages of each parsing methodology.
                                                                         12M
                                                                                3 L3
 7.
       How operator precedence parse table is constructed for an
       operator grammar. Also explain operator precedence parsing.
                                                                        12M
                                                                                3 L4
                                      UNIT-IV
 8.
       Generate the Three Address Code for the following code
       While(v2<v1)
       {
       V3=v3*v2:
       V2=v2+1;
       V4=v4*v3:
       While(v4<20)
       If (v3>30) { break; }
       V2=v2*v4;
       }
       V1=v1+1;
                                                                         12M
                                                                                4 L2
                                        OR
 9. a) Discuss block structure and non-block structure
                                                               storage
       allocation.
                                                                         6M
                                                                                4 L2
    b) Discuss the need of symbol table manager.
       Provide a brief note on the construction of symbol table.
                                                                         6M
                                                                                4 12
                                      UNIT-V
10. a) Explain different principal source of optimization technique with
                                                                                 L2
                                                                                5
       suitable example
                                                                          6M
                                                                                5 L2
    b) Explain Peephole optimization techniques with suitable example
                                                                          6M
                                        OR
11.
       Consider the following program for matrix multiplication
       for(i=0;i<10;i++)
         for(j=0;j<10;j++)
            c[i][j]=0;
       for(i=0;i<10;i++)
          for(j=0;j<10;j++)
            for(k=0;k<10;k++)
                c[i][j]=c[i][j]+a[i][k]*b[k][j];
       convert the given coding into a suitable form and perform the
       following
        i. What are the basic blocks of the code?
       ii. Construct a flow graph.
       iii. Identify the loops in the flow graph.
                                                                         12M
                                                                                5 L3
```

*** End ***