Hall Ti	cket Number :													
Code:	1G562				<u></u>				<u> </u>				R-11 / R-	13
	III B.Tech. II Semester Supplementary Examinations May 2017													
	CAD/CAM													
	(Mechanical Engineering)													
Max.	Max. Marks: 70 Time: 3 Hours Answer any Five guestions												JUrs	
	Answer any Five questions All Questions carry equal marks (14 Marks each) ********													
1. a)	Explain the pro	oduct	t cyc	le in t	the li	ght c	f CA	D/CA	۸M.					8M
b)	Explain the be	nefits	s of (CAD	over	conv	ventio	onal	desig	n pro	oces	s.		6M
2. a)	What are the v													4M
b)	A line with end succession. R	-	•		•		-				-			
	mirror reflectio		-				•			-			-	
	transformed lir	ne.												10M
										,				
3.	A cubic Bezier (8, 4). Find the					-		•				•	, , ,	14M
	(0,)))	0 9 0 0								P 0				
4. a)	Compare and	contr	ast b	betwe	en s	sever	al inp	out s	ysten	ns us	sed i	n NC	C system.	7M
b)	Explain the ro				•				nual	Prog	gram	minę	g Method and	
	Computer Ass	isted	Pari	Pro	gram	ming	l Met	hod.						7M
5. a)	Explain the co	mpos	site p	oart c	once	ept in	grou	ip teo	chnol	ogy	with	an e	example.	8M
b)	Explain the be	•	•			•	U	•		0.			•	
·	group technolo					•								6M
6. a)	Discuss the da systems of an			and s	syste	m re	ports	s gen	erate	ed by	/ the	cor	nputer control	7M
b)	What are the t			or ele	men	ts of	an A	SRS	?Ex	plain				7M
											-			
7. a)	State and elab	orate	e on	the a	dvar	ntage	s of	CIM	in a r	nanı	Ifacti	uring	g unit.	6M
b)	What are the t	hree	fund	ame	ntal o	conce	epts	in MF	RP? I	Expla	ain th	nem.		8M
0 - `	0.46461	a -1 -	• • ·	6			ا ا م			1 u - I				O 1
8. a)	Outline the obj				•						4 ol	404		6M
b)	Explain any or	ie no	n co	ntact	insp	ectio	n me	emoo	with	nea	ιske	etch.		8M

	Code: 1G565		R-11 / R-13	
C	III B.Tech. II Semester Suppl	lementary Examinations M	1av 2017	
		achine Elements-II	lay 2017	
		nical Engineering)		
	Max. Marks: 70	6 6,	Time: 3 Hours	
		any Five questions		
	All Questions carry e	equal marks (14 Marks each)		
. a)	Write the advantages of ball and roller b	earings over bush bearings.		
b)	A 75 mm long full journal bearing of diam	C C	of 12 KN at a shaft	
5)	speed of 1800 rpm. The clearance ratio is			
	operating temperature. Find the coefficient	•	. ,	
	friction.			1
	With neat sketch explain the detailed de	sign procedure of piston?		1
	Design a connecting rod of I section for	a petrol engine for the following	specifications:	
	Cylinder diameter	: 100 mm.		
	Max. Explosion pressure	: 1.2 MPa.		
	Length of connecting rod	: 300 mm.		
	Stroke length	: 120 mm.		
	Speed of engine	: 1500 rpm.		
	Weight of reciprocating parts	: 12 N.		
	Compression ratio	: 6:1.		
	Design stress for the material used	: 90 N/ mm²,		
	Design bearing stress	: 12 N/ mm²,		
	Design stress for bolts	: 60 N/ mm ² .		1
	A crane hook of trapezoidal cross secti	on of depth 90 and the inner and	l outer sides of 100	
	mm and 60 mm has the centre of curva			
	section. Determine the maximum stress lifts a load of 60KN.	ses induced at inner and outer fill	ores when he hook	1
				ľ
•	Design a flat belt to transmit 15 kW at 1. a 360 mm diameter pulley. The centre	•		
	and allowable stress is 2.1 MPa. The be			1
	Design a pair of steel spur gears ($_0 = 1$	•	000 rpm of 20 tooth	•
•	pinion at a transmission ratio of 5. Th	,	•	
	module, face width and pitch diameters.	•		1
	A railway wagon weighing 18 KN and m	noving with a velocity of 9 kmph is	s brought to rest by	
	a bumper consists of 4 helical compress		• •	
	rest, the springs undergo a compressi	-	•	
	allowable shear stress for the spring r	material is 300 MPa. Rigidity m	odulus is 80 GPa.	

8. A square threaded screw 36 mm diameter and 6 mm pitch is required to move a load of 12 KN at a speed of 1.2 m / min. The end of the screw is carried on a thrust collar of 60 mm outside diameter and 30 mm inside diameter. The coefficient of thread friction is 0.12 and collar friction is 0.15. Find the power required to drive the load and the efficiency. Also find the length of bronze nut required taking the allowable bearing pressure as 9 MPa.

Design a suitable spring.

14M

14M

Hall Ticket Number :	
Code: 1G561	R-11 / R-13
III B.Tech. II Semester Supplementary Examination	ons May 2017
Instrumentation and Control Syster	ms
(Mechanical Engineering) Max. Marks: 70	Time: 3 Hours
Answer any Five questions	
All Questions carry equal marks (14 Marks ea	ach)
1. a) What are different types of transducers?	7M
b) Explain about LVDT with a neat sketch.	7M
2. a) Explain about the terms	
i) Pressure ii) Absolute pressure iii) Gauge Pressure iv) Va	acuum Pressure 7M
b) Explain about thermal conductivity gauge.	7M
3. a) Explain the construction , working and application of Hot wir	re anemometer 7M
b) Explain about Thermistors.	7M
4. a) Explain about different types of torsion meters.	7M
b) Explain about seismic accelerometer	7M
5. a) Define Strain and explain about different strain measuring te	echniques. 7M
b) Explain about bonded strain gauges and different bonding	g techniques. 7M
6. a) Differentiate between open loop and closed loop control sys	stems. 7M
b) Explain about pneumatic control system with a block diagram	m. 7M
7. a) What are the standard test inputs?	7M
b) Explain about steady state error and error constants?	7M
8. a) Explain the Concept of stability and necessary conditions fo	or stability. 7M
b) Explain about Routh-Hurwitz stability criterion.	7M

												1	1				
Hal	I Tic	ket Number :															
Cod	l e: 1	G566													R-11	/ R-	13
		III B.Tech. II	Sem									atio	ns /	Ма	ıy 20	17	
									ge								
м	ax	Marks: 70		(ме	cna	nica	li Enç	gine	ering])				Time	э: 3 Н	ours
	G/(,)				Ans	wer	any l	Five	ques	tions						5.011	0015
		Ą	ll Qu	estic	ons c	arry	-	al ma *****	arks (14 M	arks	eac	h)				
1		Explain Doug	las N	IC-G	rego	rs Th	neory	' X ai	nd Th	eory	' Y?						14M
2		Explain the co	oncep	ot, ac	dvant	ages	s, dis	adva	ntage	es &	appl	icatio	ons d	of li	ne and	d	
		staff organiza	tion?														14M
3	a)	Define plant le	ocatio	on? /	And f	acto	rs eff	ectin	g the	plar	nt loc	atior	ı?				7M
	b)	Explain differe	ent ty	pes	of pr	oduc	tion i	in pla	nt la	y out	?						7M
4	a)	Define work n	neasi	urem	ent.	State	e its o	objec	tives	?							7M
	b) A Work sampling study was conducted for 100 hours in the machine shop in order to estimate the standard time. The total no of observations recorded were 2500. No working activity could be noticed for 400 observations. The ratio between manual and machine elements was 2:1. Average rating factor was estimated as 1.15 and the total no of articles produced during the study period were 6000.										7M						
5	a)	Explain classi	ificati	onsi	of inv	/ento	orv te	chnic	าแครว์	>							7M
Ũ	b)	Explain stores					•		•		ons?						7M
6									14M								
7	a)	Explain statis	tical o	quali	ty co	ntrol	tech	niaue	es?								7M
	b)	Explain single		•	•			•									7M
8	a)	Explain differe	ent ty	pes	of jol	o eva	aluati	on m	etho	ds?							7M
	b)	Explain produ	ict life	е сус	le?												7M
	-	-		-			*	**									

						R-11 / R-13	
Hall Ticket Number :							

Code: 1G563

Max. Marks: 70

III B.Tech. II Semester Supplementary Examinations May 2017

Metrology and Surface Engineering

(Mechanical Engineering)

Time: 3 Hours

7M

7M

7M

7M

7M

7M

7M

7M

Answer any **Five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) Describe briefly the system of obtaining different types of fits, with suitable examples. 7M
 - b) Discuss importance of interchangeability and selective assembly. 7M
- 2. a) Differentiate between line standard and end standard.
 - b) Design and make a drawing of general purpose go and no-go plug gauge for inspecting a hole of 22D8.

[Data with notations: *i* (*microns*)=0.45 D+0.001D; Fundamental deviations for hole $D = 16^{0.44}$; Value for IT8=25*i*]

- 3. a) Explain the principle of interference and describe optical flat along with its different types. 7M
 - b) Write short notes on
 - i) Straight edges
 - ii) Auto-colllimator
- 4. a) In the measurement of surface roughness, heights of 20 successive peaks and valleys were measured from a datum measured over a length of 25 mm and their values are: 35, 25, 40, 22, 35, 18, 42, 25, 35, 22, 36, 18, 42, 22, 32, 21, 37, 18, 35 and 20 micros. Calculate Centre Line Average (CLA) value and Root Mean Square (RMS) values of the surface.
 - b) With the help of a neat diagram describe the construction and working of the Tayler-Hobson's 'Talysurf'.
- 5 a) Show that the best wire size for measuring effective diameter of threads is given by $d_b=$ (P/2) Sec (/2), where P is pitch of thread and is half of the included angle of thread. 7M
 - b) Discuss the various types of pitch errors along with their causes and effects.
- 6. a) Describe the importance of alignment test of a machine tool, give any three equipment's required for alignment test and list various geometrical checks generally carried out on machine tools.
 - b) Explain the procedure with neat sketches to check alignment radial drilling machine with respect to the following items:
 - i) Squareness of spindle axis to the base plate
 - ii) Levelling of base plate
- Enumerate the different methods of tooth thickness measurement and explain gear tooth Vernier with neat diagram.
 14M
- 8. a) Explain why the surface treatment of manufactured products may be necessary and explain any one method/process studied under overlay coatings
 7M
 - b) Write short note on
 - i) Laser Peening
 - ii) Physical vapor deposition

7M

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

R-11 / R-13

Code: 1G564

III B.Tech. II Semester Supplementary Examinations May 2017

Thermal Engineering-III

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours

4M

4M

Answer any **Five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) Explain the working of closed cycle gas turbine with a neat sketch.
 - b) Air enters the compressor of a gas turbine plant operating on air standard cycle at 100 kPa and 300 K with a volumetric flow rate of 5 m³/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1400 K. The turbine and the compressor each has an isentropic efficiency of 80 %. Calculate i) thermal efficiency of the cycle ii) the back work ratio iii) Net power developed in kW.
- 2. a) The diameter of the propeller of an aircraft is 2.5 m. It flies at a speed of 540 km/h at an elevation of 8000 m, where air density is 0.525 kg/m³. The flight to jet speed ratio is 0.75. Calculate i) air flow rate through the propeller ii) thrust produced iii) specific thrust iv) specific impulse v) thrust power.
 10M
 - b) Explain the process of expansion in turbine and nozzle in a turbojet cycle.
- 3. A reversed Carnot cycle air conditioner of 1 Ton of refrigeration capacity operates with cooling coil temperature of t_o= 5 °C. The surrounding air temperature at 43 °C is used as a cooling medium rising to a temperature of 53 °C. The temperature of heat rejection is 55 °C. The overall heat transfer coefficient of heat exchanger between working substance and surrounding air is 250 W / m² K. Determine the mass flow rate of surrounding air entering the heat exchanger, area of heat exchanger, COP and power consumption of air conditioner.
- 4. a) Draw the schematic diagram of vapor compression system of refrigeration with labeling.
 - b) A R12 vapor compression system operating at condenser temperature of 40 °C and evaporator temperature of -5 °C develops 15 tons of refrigeration. Calculate i) mass flow rate of refrigerant circulated, ii) theoretical piston displacement of compressor and piston displacement per ton of refrigeration, iii) Horsepower per ton of refrigeration, iv) heat rejected in the condenser, v) Carnot COP and actual COP of the cycle. (Use P-h charts for R12)

10M

14M

4M

5. In an ammonia absorption system with an analyzer but without a dephlegmator, the following data are given: Condenser pressure 20.3 bar, evaporator pressure 2.1 bar, Generator temperature 156 °C and absorber temperature 40 °C. With reference to h- charts and schematic diagram the data is given in Table 1.

Determine the terms, per unit mass of vapor distilled i) specific solution circulation rate, ii) heat transfer in liquid-liquid heat exchanger iii) heat added in the generator iv) pump work v) COP vi) Energy Balance

State	Pressure	Temperature	Concentration ()	Enthalpy
point	(p) bar	(t) °C	NH ₃ (kg)/Mixture(kg)	(h) kJ/kg
1	20.3		0.34	
2	20.3	156	0.2	616
3	20.3	67	0.2	205
3a	2.1	67	0.2	205
4	2.1	40	0.34	63
4a	20.3	40	0.34	63
1a	20.3		0.34	
5-7	20.3		0.913	1947
8	20.3	53	0.913	507
9	20.3	40	0.913	444
10	2.1	-16	0.913	444
11	2.1	5	0.913	1281
12	2.1		0.913	

- 6. a) Describe basic psychrometric processes in air conditioning with necessary sketches?
 - b) Moist air enters a chamber at 5 °C DBT and 2.5 °C WBT at a rate of 90 m³/min. The barometric pressure is 1.01325bar.While passing through the chamber; the air absorbs sensible heat at the rate of 40.7 kW and picks up 40 kg/h of saturated steam at 110 °C. Determine the dry and wet bulb temperatures of the leaving air.
- 7. Air at 32.2 °C DBT and 50% RH, enters a spray type humidifier at the rate of 4.717 m³/s. Chilled water enters at 4.4 °C and leaves at 11.2 °C. The ratio of water to air mass flow rate is 1.2. The face velocity of air is 2.032 m/s. The value of the product k_∞ *a* may be taken as kg/sm³. Calculate the length of dehumidifier and the state of air at the exit assuming parallel flow. 14M
- 8. a) Explain various purposes of ventilation?7Mb) Describe about summer air conditioning with neat sketch?7M

14M

7M

7M