Hall Ticket Number :						

Code: 1G361

III B.Tech. II Semester Supplementary Examinations December 2015 VLSI Design

(Electronics & Communication Engineering)

Max. Marks: 70	,	Time: 03 Hours
	Answer any five questions	
	All Questions carry equal marks (14 Marks each	h)

	All Questions carry equal marks (14 Marks each)	
1. a)	List out the processing steps involved in the manufacturing of an IC.	7M
b)	With neat sketches explain BICMOS fabrication process.	7M
2. a)	Derive an equation for I $_{\mbox{\scriptsize ds}}$ of an n channel enhancement MOSFET operating in saturation region.	7M
b)	Derive an equation for r_{ds} of an n channel enhancement MOSFET in linear region.	7M
3.	What is stick diagram and explain about different symbols used for components in stick diagram.	14M
4.	What are the main sources of delay through a single gate? Mention the two possible solutions for that delay and explain them with a neat diagram.	14M
5. a)	Draw and explain circuit diagram of a one transistor with transistor capacitor dynamic RAM.	7M
b)	Draw the schematic and logic diagram for a single bit adder and explain its operation with truth table	7M
6. a)	Design an 8:1 multiplexer using dynamic CMOS NOR-NOR PLA implementation.	7M
b)	Implement the 8:1 multiplexer using EPROM.	7M
7.	Explain about the following EDA tools. i) Design rules verification	
	ii) Logout vs schematic verification	14M
8. a)	What are the objectives of BIST?	5M
b)	Explain the working of signature analysis as one of the BIST technique.	9M

			Ţ												
На	ll Tio	cket Number :													
Cod	le :	1G364												R-11	
		III B.Tech. II S	Semeste	r Sur	ople	mer	ıtary	Exa	min	atior	ns De	ecem	ber 20	015	
			Digi	-	-		-								
	\ <i>1</i>	. Marks: 70	(Electr	onics	& C	omm	unica	ation	Engir	neeri	ng)	T :		0 Ha	
'	viax	. Marks: 70		Ansı	wer .	anv	five (ques	tions			11	me: u	3 Hou	rs
		А	II Questic			equa		•			s eac	h)			
1.	a)	Explain PCM t	ransmiss	ion sy	/sten	n									8M
	b)	For a PCM sys sample rate, (I and (d) quanti	b) minimu	m nu		• •			-		,	,			
		Maximum ana			encv	= 4	kHz								
		Maximum dec	• .	•	•			= ±2	.55 ∖	/					
		Minimum dyna	amic rang	e = 46	6 dB										6M
2.	a)	Draw neatly fur modulator con	struct the	truth	tabl	e, ph	nasor	diag	ıram,	and	cons	tellati	on dia	•	8M
	b)	For a QPSK m carrier frequer				•		•	,	•		•			
		bandwidth (fN)	•			,,,,,,,,	10 (11)	J				naoa	, ty quic	^	6M
3.	a)	Discuss error 2, 4, 8 level PS	•		f PS	SK sy	/sten	ns. D	raw	the g	graph	for e	rror rat	tes of	8M
	b)	QPSK system	paramete	ers ar	e: C	arrie	r pov	ver =	10 p	W E	Bit rat	e = 60) kbps		
		Noise power =	•		lwidt	h = 1	20 k	Hz. [Deter	mine)				
		i. Carrier power													
		ii. Noise poweiii. Noise powe		in dP	βm										
		iv. Energy per	•		<i>7</i> 111.										
		v. Carrier-to-n			o in	dB.									
		vi. E_b/N_0 ratio.													6M
4.	a)	Explain Huffm	an encod	ing al	gorit	hm									6M
	b)	Five symbols and codeword		•	•			wn in	the	table	. Con	npute	Entrop	эу	
						sC	0.4	4							
						s1	0.2	2							
						s2	2 0.2	2							
						s3	0.	1							
						s4	0.	1							8M
5.	a)	Explain Hamm	ning code.												8M
	b)	For a 12-bit da required, arbitilogic condition	rarily plac of each l	e the Hamm	Har ning	nmin bit, a	g bit assun	s inte	the arb	dat itrary	a strir singl	ng, de e-bit t	etermin transm	e the	01.4
_	,	error, and prov			•				esstu	ılıy d	etect 1	ne er	or.		6M
6.	a)	Explain OSI se	•	•			archy	/.							10M
_	b)	Explain data to								- 1				.1 4	4M
7.	a)	With suitable communication	•	•	expla	aın	data	te	rmina	al e	equipr	nent	and	data	7M

communication equipment. b) Draw neatly UART receiver block diagram

7M

8. a) Draw the structure of ATM cell for User-Network Interface and Network-Network Interface. Explain each field in the header. 10M

b) Explain Primary Rate Interface of ISDN. 4M

Hall Ticket Number :									
	1	1			J.		J	R-	11

Code: 1G365

III B.Tech. II Semester Supplementary Examinations December 2015

Electronics Measurements and Instrumentation

(Electronics & Communication Engineering) Max. Marks: 70

Answer any five questions All Questions carry equal marks (14 Marks each)

1.	a) b)	Explain the static characteristics of instruments with examples? Explain D 'Arsonval movement in the process of designing instruments.	7M 7M
2.	a) b)	What is meant by voltmeter sensitivity? Explains its relevance in circuit applications. Explain the range extension of ammeters?	7M 7M
3.	a) b)	Discuss Square wave and Pulse generators with a neat block diagram? With a neat block diagram explain the working of random noise generator?	7M 7M
4.	a)	Explain the following terms i) fluorescence ii) phosphorescence	
	b)	iii) persistence Draw the block diagram of CRT and explain the function of each block?	7M 7M
5.	a) b)	Explain the operation of Dual beam CRO with a neat block diagram? Explain the concept of the frequency measurement using Lissajous figures?	7M 7M
6.	a) b)	Draw the circuit diagram of Maxwell's bridge and derive the conditions for balance? Explain the operation of Q-meter in detail?	7M 7M
7.	a) b)	What is transducer? Write the classifications of transducers? With proper examples differentiate between active and passive transducers?	7M 7M
8.		Draw the block diagram of data acquisition system and explain the function of each block in detail with examples?	14M

Time: 03 Hours

	Hall Ticket Number :											
--	----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 1G363

III B.Tech. II Semester Supplementary Examinations December 2015

Microprocessors and Interfacing

(Electronics & Communication Engineering)

Max. Marks: 70 Time: 03 Hours

Answer *any five* questions
All Questions carry equal marks (14 Marks each)

1.	a)	Discuss about memory organization in 8086 microprocessor.	7M
	b)	With a diagram, explain about maximum mode operation of 8086.	7M
2.	a)	Discuss about assembler directives with examples.	7M
	b)	Write an ALP in 8086 to add two 8- bit decimal numbers. Result is 16-bit.	7M
3.	a)	Explain about modes of operation of 8255 with neat diagrams.	7M
	b)	Write an ALP to control a stepper motor through 8255 interface.	7M
4.	a)	Interface 8k x 8 SRAM and 8k x 8 EPROM to 8086. Use 74138 decoder.	7M
	b)	Discuss about mode control word to program 8257 with an example.	7M
5.	a)	Discuss about DOS and BIOS interrupts with necessary examples.	6M
	b)	Explain about the control words of 8259 with their formats.	8M
6.		Write in detail about 8253 programmable interrupt controller with a neat internal diagram. Also discuss about modes of operation.	14M
7.	a)	Discuss about programming of 8251USART in sync and async modes.	10M
	b)	Discuss about high speed serial communication standards using USB.	4M
8.		Compare and contrast between 80286 and 80386 processors with respect to architectures.	14M

III B.Tech. II Semester Supplementary Examinations December 2015

Management Science

(Electronics & Communication Engineering)

(Electronics & Communication Engineering)

Max. Marks: 70

Answer *any five* questions
All Questions carry equal marks (14 Marks each)

- 1. a) What are the principles and elements of scientific management?
 - b) Why is the systems approach to Management more appropriate today?
- 2. a) Explain the various methods of production.
 - b) What is statistical quality control?
- a) Define Marketing. Explain the functions of marketing.
 - b) Who are the intermediaries involved in the channel of distribution?
- 4. a) What do you understand by Recruitment?
 - b) What is Performance Appraisal?
- 5. What is Critical Path Method (CPM)?
- 6. a) What is environmental scanning?
 - b) List out various steps involved in process of strategy implementation
- 7. a) What is Management Information System?
 - b) Give an overview of supply chain management.
- 8. Discuss the ethical issues in Human Resource Management

Time: 03 Hours

Hal	l Tic	ket Number :	
C^{Q}	o · 1	G362 R-11	
Cou		II B.Tech. II Semester Supplementary Examinations December 2015	
		Microwave Engineering	
N	lax.	(Electronics & Communication Engineering) Marks: 70 Time: 03 Hours	S
		Answer any five questions	
		All Questions carry equal marks (14 Marks each)	
1.	a)	Derive an expression for the cut off frequency of a rectangular waveguide in TE mode.	7M
	b)	A rectangular waveguide is filled by dielectric material of $v_r = 9$ and has inside dimensions of 7x3.5 cm. It operates in the dominant TE_{10} mode. Determine the cutoff frequency, phase velocity and the guide wavelength in the guide at 2 GHz	7M
2.	a)	What is TEM mode of propagation? Explain in detail why a TEM mode is impossible in a waveguide.	7M
	b)	What is a cavity resonator? What are its applications? Derive an expression for the Q factor of a rectangular cavity resonator.	7M
3.	a) b)	What is S matrix? What is its significance? Write its properties. Obtain the S matrix of a E plane Tee and H plane Tee	7M 7M
4.	a)	What is Faraday rotation? Where is it used? Explain the working principle of Gyrator with a neat sketch.	7M
	b)	What are irises? What is their purpose? Explain with suitable diagrams. How are irises comparable with posts and tuning screws?	7M
5.	a)	Compare O type tubes with M type tubes. List out the devices in O type and M type tubes.	7M
	b)	Explain with a neat diagram, how a two cavity Klystron Amplifier amplifies a microwave signal? Why a reentrant cavity is used in this? How is velocity modulation converted into current modulation?	7M
6.	a)	Draw the structure of TWT amplifier. Explain the function of each block. What are the applications of a TWT amplifier?	7M
	b)	Write a short note on (i) Hartree conditions (ii) f mode operation	7M
7.	a)	Explain the working principle of a TRAPATT diode with a neat sketch? What are the applications of TRAPATT diode?	7M

experiment using a microwave bench setup? Justify them. 7M

b) What are the various precautions to be taken while performing a microwave

b) What is a Gunn Oscillation mode? What are three possible domain modes in

8. a) Explain how an unknown impedance is measured using a microwave bench setup.

this? Explain in brief.

7M

7M