
Hall Ti	icke	et Number :	I						
Code: 4G465									
III B.Tech. II Semester Supplementary Examinations Nov/Dec 2019									
		Computer System Architecture							
(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours									
	-	er all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)							
		UNIT-I							
1.	a)	Name four main components of a computer and give their functions	7M						
	b)	Describe a single bus structure with a suitable diagram	7M						
		OR							
2.		What is overflow and underflow ,what is the reason if the computer is considered							
		as infinite system do we still have the problem justify answer UNIT-II	14M						
3.	a)	What are the various shift micro operations explain them in brief	7M						
	b)	Perform the logic AND OR and XOR with the two binary strings 10011100 and							
	,	10101010	7M						
		OR							
4.	a)	Explain fetch and decode operations with neat diagram	7M						
	b)	What is an interrupt explain about BSA instruction	7M						
_		UNIT-III							
5.		What are the major components of CPU explain stack organization with a block diagram	14M						
		OR							
6.	a)	Explain with the help of diagram the selection of address for control memory	7M						
	b)	Discuss in brief about the applications of microprogramming	7M						
		UNIT–IV							
7.		What is DMA and need of DMA explain the working of DMA and mention its advantages OR	14M						
8.		Summarize and explain the types of mapping techniques used in the usage of							
		cache memory	14M						
		UNIT-V							
9.	a)	What are the characteristics of multiprocessor explain in brief	7M						
	b)	Compare and contrast tightly coupled and loosely couples multiprocessor	7M						
10.		OR What is the pipeline name the two pipeline organization explain about arithmetic							
10.		pipeline with the help of example	14M						

	На	Il Ticket Number :	
	Cod	e: 4G263	
		III B.Tech. II Semester Supplementary Examinations Nov/Dec 2019	
		Microprocessors and Microcontrollers (Electrical & Electronics Engineering)	
		x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1.	a)	With a neat diagram, explain the internal architecture of 8086 microprocessor.	8M
	b)	What is an assembler directive? Explain any five assembler directives with examples.	6M
_		OR	
2.	a)	Write an assembly language program in 8086 to arrange the given 16-bit numbers in lowest to highest order.	7M
	b)	с С	7 M
	b)	Draw the register organization of 8086 and explain typical applications of each register.	<i>i</i> ivi
3.	a)	UNIT–II Explain the 8255 programmable peripheral interface and its operating modes with a neat	
5.	a)	functional block diagram.	7M
	b)	Explain the interfacing procedure of an 8-bit DAC with 8086 microprocessor.	7M
	,	OR	
4.	a)	Discuss about I/O mapped I/O and memory mapped I/O. Write a comparison between I/O mapped I/O and memory mapped I/O.	6M
	b)	Draw and explain the stepper motor interface to 8086 and write small program to rotate stepper motor in clock wise and anticlockwise direction	8M
		UNIT-III	
5.	a)	Explain the need for DMA data transfer? Draw and discuss the architecture of 8257.	7M
	b)	Explain how static RAM is interfaced to 8086. Give necessary interface diagram assuming appropriate signals and memory size.	7M
		OR	
6.	a)	Explain the features of static RAM and dynamic RAM. Give the comparison between these two.	7M
	b)	What are the advantages of DMA controlled data transfer over interrupt driven or program controlled data transfer? Why are DMA controlled data transfers faster?	7M
		UNIT–IV	
7.	a)	Explain with a neat diagram the working of 8251 PCI.	8M
	b)	Draw the interface circuits for data conversion from	
		(i) TTL to RS232C and (ii) RS232C to TTL	6M
8.	a)	OR Describe the purpose of 8086 interrupt vector table.	6M
0.	b)	With a neat schematic, explain the interfacing of 8259 with 8086 microprocessor.	8M
	0)	UNIT-V	0111
9.	a)	Discuss the features of 8051 microcontroller and explain its operation with the help of a block diagram.	7M
	b)	Explain the various instruction set of 8051 microcontroller.	7M
	/	OR	
10.	a)	What are the addressing modes of 8051 microcontroller? Explain each addressing mode	
		with an example.	6M
	b)	Discuss about the salient feature of ARM (Advanced RISC Machines) processors	4M
	c)	Explain the different types of interrupts and their priorities in 8051.	4M

Hall Ticket Number :												
Code: 4G261										R-14		
III B.Tech. II Semester Supplementary Examinations Nov/Dec 2019												
		Pow	er S	yste	em /	Anc	ılysi	S				
	(Electi	rical d	and	Elec	tron	ics E	Engir	neeri	ng)			
Max. Marks: 70											Time: 3 Ho	urs
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)												
				l	JNIT	-1						
1. a) Write Z bus	building	algori	thm									6M
 b) Derive the expression for bus admittance matrix Ybus in terms of prim admittance matrix and bus incidence matrix 									s of primitive	8M		
					OF	R						

- 2. a) Write the procedure for the modifications of Z bus matrix for Network Changes 4M
 - b) Consider the power system shown. Each generator and the line impedance of j0.2 pu and j0.5 pu respectively. Neglecting line charging admittances, form y bus matrix using direct inspection and singular transformation

3 The following is the system data for a load flow solution:

LIN	IE DATA										
Bus	Admittance	Load data									
code	Admittance	BUS	Р	0	v	REMARKS					
1-2	2-j8	CODE	Г	Q	v						
1-3	1-j4	1	-	-	1.06	SLACK					
2-3	0.66-j2.66	2	0.5	0.2	1+j0	PQ					
2-4	1-j4	3	0.4	0.3	1+j0	PQ					
3-4	2-j8	4	0.3	0.1	1+j0	PQ					

Determine the voltages at the end of first iteration using Gauss-Seidel method. 14M

OR

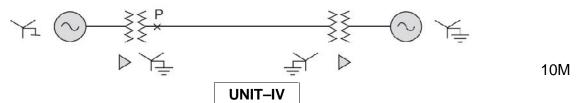
- 4. a) With a neat flow chart explain the load flow solution by Guass-seidal method 7M
 - b) Explain
 - I. Decoupled load flow and
 - II. Fast decoupled load flow methods

7M

10M

8M

6M


4M

UNIT–III

- 5. a) Derive the fault current equation for double line to ground fault for an unloaded alternator
 - b) The line currents in a 3-phase supply to an unbalanced load are respectively $I_a = 10 + j20$, $I_b = 12 j10$ and $I_c = -3 j5$ amperes. The phase sequence is abc. Determine the sequence components of currents

OR

- 6 a) What is meant by per unit quantity? Why per unit method is considered superior to percent method for short-circuit calculations?
 - b) A double line to ground fault occurs on phases *b* and *c*, at point *P* in the circuit whose single line diagram is shown Determine the sub transient currents in all phases of machine-1, the fault current and the voltages of machine I and voltages at the fault point. Neglect pre-fault current. Assume that machine-2 is a synchronous motor operating at rated voltage. Both the machines are rated 1.25 MVA, 600 volts with reactance's of $X = X^2 = 8\%$ and $X^0 = 4\%$. Each 3-phase transformer is rated 1.25 MVA, 600 volts delta/4160 volts star with leakage reactance of 5%. The reactance's of transmission line are $X^1 = X^2 = 12\%$ and $X^0 = 40\%$ on a base of 1.25 MVA, 4160 volts

7. a) Derive the condition for maximum power transfer can be achieved 7M b) What is meant by stiffness of synchronous machine and explain how stability of the system can be understood using synchronizing power coefficient? 7M OR 7M 8. a) Derive the power angle equation? b) Explain methods to improve steady state stability limit also explain the deference between steady state stability limit and transient state stability limit 7M UNIT-V 9. a) Explain equal area criterion in case of "sudden change in mechanical input"? Discuss its application and limitation in the study of power system Stability. 8M b) Derive the swing equation explaining symbol of each term used 6M OR 10. a) Explain the point by point method of solving the swing equation. Compare his method with the equal area criterion method 8M b) Explain the methods to improve transient stability analysis 6M

	Hall	Ticket Number :]		
	R-14								R-14						
C	Code: 4G264 III B.Tech. II Semester Supplementary Examinations Nov/Dec 2019														
	Power System Operation and Control														
			(Ele	ctric	al a	nd E	lect	roni	cs Er	ngine	eerir	ng)			0.11
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********														
							U	IIT-I							
1.	a)	Derive the transmis					•		•		•				7M
	b)	Consider a Two Bub bus and load is con	necte	ed to	busź	2.lf a	load	of 12	.5 MV	V is t	ransr	nitteo	d from	plan	it1
		to the load a loss of and the load dem	nand	if th	ie co	ost o	f rec	eiveo			0				
		incremental product dF1/dP1 = 0.025 l			oru	ie pie		are.							
		$dF2/dP2 = 0.05 P_{1}$													7M
				,			OR								
2.	a)	Derive the express	sion f	or lo	ss co	oeffic	ients	and	state	e the	assu	mpti	ons m	nade	in
		deriving the same.										-			7M
	b)	Incremental fuel co dC1/dPG1 = 0.2 F		-	-	er M	Wh f	or a p	olant	cons	isting	of ty	vo uni	ts are	e:
		dC2/dPG2 = 0.2 F			-										
		Assume that both u to 250 Mw and the 120 MW respective	maxi	mum	and	mini	mum	load	s on (each	unit	are to	o be 1	25 ar	nd
		system load varies			ull ra	nge?	' Wha	at are	the o	corre	spon	ding	values	s of th	
		plant incremental c	osts?)		Г									7M
3.	2)	Write the optimal so	chodi	ilina	ofb	/dro.t		IIT–II							7M
э.	a) b)	•		Ũ	-			iai sy	Sterri	•					7M
	b)	Explain hydroelectr	ic po	weij	Jan	mou	OR								7 101
4.		A Two-Plant system	n hav	vina a	a stea	am pl		ear t	he lo:	ad ce	ntre	and a	a hvdr	o-pla	int
		at a remote locatio hours a day. The cl	n. Th	e loa	ad is	500N	/W fo	or 16					•	•	
		$C1 = 120 + 45 PGT + 0.075 P^2GT$,													
		W2 = 0.6 PGH +	0.00)283	P2G	Н	m³/s								
		Loss co-efficient,B2													
		Find the generatio operating cost of the				•			-		•) pla	nt, an	d dai	ily 14M
			_					IT–II		-					_
5.	a)	With the help of nea			•				parts	of sp	eed-	gove	rning s	syster	
	b)	Write about modeli	ng of	exci	tatior	n sys		?							6M
	OR														

Code: 4G264

6.	a)	Write the block diagram representation of steam turbines and approximate linear models.	8M
	b)	Write about the modeling of governor.	6M
	5)		OW
7.	a)	Discuss the merits of proportional plus integral LFC of a system with a neat block diagram.	5M
	b).	with a neat block diagram explain dynamic response and the steady state analysis of isolated power system	9M
		OR	
8.	a)	Explain Tie-line bias control.	4M
	b)	Explain optimal two area load frequency control.	10M
		UNIT–V	
9.	a)	Explain about compensated transmission lines?	8M
	b)	A 3-Phase 5kW induction motor has a power factor of 0.85 lagging. A bank of capacitor is connected in delta across the supply terminal and power factor raised to 0.95 lagging. Determine the KVAR rating of the capacitor in each phase.	6M
		OR	
10.	a)	Write the advantages and disadvantages of different types of compensating equipment for transmission systems?	7M
	b)	Discuss the effects of reactors and capacitors in reactive power control.	7M
