	Hall Ticket Number :	
	Code: 4G564	
	III B.Tech. II Semester Supplementary Examinations May 2018	
	Applied Thermodynamics-III	
	(Mechanical Engineering) Max. Marks: 70 Time: 3 Hours	
	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	

	Note: Refrigeration & Air-Conditioning tables are allowed Symbols and abbreviations are having their regular meaning.	
	UNIT-I Describe briefly with the help of post electors and T a diagrams various methods employed for	
	Describe briefly with the help of neat sketches and T-s diagrams, various methods employed for improvement of thermal efficiency of an open cycle gas turbine plant.	14M
	OR	
	A turbojet engine flying at a speed of 925 km/h consumes air at the rate of 60 kg/s. Calculate: (i) Exit	
	velocity of jet when the enthalpy change for the nozzle is 210 kJ/kg and velocity co-efficient is 0.96, (ii) Fuel flow rate in kg/s when air-fuel ratio is 72:1, (iii) Thrust specific fuel consumption, (iv) Thermal	
	Efficiency of the plant when the combustion efficiency is 91% and calorific value of fuel is 44500 kJ/kg,	
	(v) Propulsive power and (vi) Propulsive efficiency.	14M
	UNIT-II	
a)	Briefly explain the working of an air-refrigeration system with neat sketch. Represent the cycle on <i>P-h and</i> T-s charts.	7M
b)	An ice plant produces 12 tonnes of ice per day at 0°C using water at room temperature of 30°C.	
	Calculate the power rating of the compressor-motor if the COP of the plant is 3. Consider overall	
	electro-mechanical efficiency of compressor-motor is 0.9. Consider latent of heat of freezing for water is 335 kJ/kg.	
	Specific heat of water is 4.184 kJ/kgK	7M
	OR	/ IVI
	A vapour compression refrigerator circulates 5.2 kg of NH ₃ per minute. Condensation takes place at	
	32°C and evaporation at -12°C. There is no sub-cooling of the refrigerant. The temperature after isentropic compression is 80°C and specific heat of superheated vapour is 2.76 kJ/kgK. Calculate:	
	i. Co-efficient of Performance of the refrigerator,	
	ii. Ice produced in kg per hour in the evaporator form water at 32°C to ice at 0°C. Consider latent heat of fusion of ice = 336 kJ/kg, specific heat of water = 4.187 kJ/kgK, and iii. The effective swept volume of the compressor in m³/min.	14M
	UNIT-III	
	Describe the working of a NH ₃ -H ₂ O vapour absorption refrigeration system with a neat sketch.	14M
	OR	
	In an absorption refrigeration system, the generator, condenser and evaporator temperatures are 112°C, 40°C and -10°C respectively. Calculate the ideal COP of the system. Calculate the change in COP in the following cases occurring independently. (i) Generator temperature increases by 20°C, (ii) Condenser	
	temperatures decreases by 10°C and (iii) Evaporator temperature rises by 8°C.	14M
	UNIT-IV	
	120 m³ of air per minute at 40°C and 65% relative humidity is cooled to 20°C DBT by passing through	
	a cooling coil. Calculate:	
	(i) Capacity of cooling coil in kJ/h(ii) Amount of water vapour removed per hour,	
	(iii) Relative humidity of air at its exit and	
	(iv) WBT of air at its exit.	14M
a)	OR Describe the working of a winter air-conditioning system with a neat sketch.	7M
b)	Explain the following process with the help of psychrometric chart	
•	(i) Sensible heating,	
	(ii) Heating and Dehumidification and (iii) Cooling and Humidification.	7M
	(iii) Cooling and Humidification. UNIT-V	/ IVI
	What are the different air filters used in air-conditioning systems? Explain the advantages and	
	disadvantages of viscous filters over dry filters.	14M
	OR	
	Explain different methods of humidifying the air. Give their relative merits and demerits.	14M

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Hall ⁻	Ticke	et Number :									
Code	: 4G	562								R-	14
	Ш	B.Tech. II Sem	nester :	Suppl	emei	ntary I	Exan	ninat	ion	s May 2018	
					AD/C						
May	Mar	dec. 70	(M	echar	ical E	ngine	ering)		Time: 2	Hours
		ks: 70 Il five units by c	hoosin	a one	aues	tion fro	m e	ach u	ınit 1	7 Time: 3 7 5 x 14 = 70 M	
7 (115 * *	Oi G	" " TVC OT III'S DY C	211003111	9 0110	****	***		acii o	,,,,,	0 1 1 7 0 10	idiks j
						UNIT-					
1.	a)	Define the term			•		•				
		product life cyc computerized m					uractu	uring (envii	ronment and i	n a 1
	b)	State the benefi		•			1				'
	D)	Otate the benefit	13 01 00	mpater	/ llacc	OR	•				
2.	a)	What is display u	nit? Expl	ain scre	en buf		scanni	ina rela	ated 1	to CAD systems.	_
	b)										
	/	display systems. Give an example.									
						UNIT-I	I				
3.	a)	What are the vari	ous type	s of cur	ve fittin	g manip	ulatio	n techr	nique	s? Explain them	١.
	b)	State the differe	nces be	tween	C-rep	and B-ı	ep te	chniqu	ues (of solid modelin	ng.
						OR					
4.		A cubic Bezier of			•		•		•	, , ,	
		and (8, 4). Find	the equ	ation of	f the c	urve an	d cald	culate	the	point at u=0.4 a	and 1
		u=0.6.				UNIT-II					
5.	a)	Discuss the diffe	erent N(C words				ammi	na te	echniques.	
0.	b)	Explain the basi				•	. •		•	•	
	,	•			,	OR					
6.	a)	With a block dia	gram ex	kplain n	nain fe	atures	of CN	IC ma	chin	e tools.	
	b)	Differentiate be	tween	manual	part	progra	mmin	g and	COI	mputer aided	part
		programming in	CNC m	achine	s						
						UNIT-I	/				
7.	a)	What is the bas		ming g	roups	in grou	o tech	nnolog	y? E	explain the cond	cept
	1. \	of composite pa									
	b)	What are the d aided process p						•			uter
		aided process p	narii ii ig	· vviiioi	11 13 50	OR	крішіі	your	CITO		
8.	a)	Explain the ben	efits of v	vell des	signed		catior	n and	codi	ng system for C	GT.
-	b)	What is product			•					•	
	,	•		•		UNIT-\		•			
9.	a)	Write the working	principle	e of com	nputer	vision sy	stem	as app	lied	to quality control	
	h)	Explain the app	lication	of mach	nine vi	sion in	comp	uter a	ided	inspection	

b) Distinguish between automation and CIM.

10. a) What are the types of CMM? State the applications.

OR

7M

7M

Code: 4G565						R-14	
Hall Ticket Number :							

III B.Tech. II Semester Supplementary Examinations May 2018

Design of Machine Elements-II

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. Design a journal bearing for a centrifugal pump with the following data. Diameter of journal=140mm, load on the bearing=50kN and speed of the journal = 800rpm.

14M

OR

2. Design a journal bearing to support a load of 5000N at 720rpm using a hard hardened steel journal and a bronze backed babbit bearing. The bearing is lubricated by oil rings, room temperature is 25° and oil temperature is 82°.

14M

UNIT-II

3. a) Select a bearing for a 40mm diameter shaft rotates at 400rpm. Due to bevel gear mounted on the shaft, the bearing will have to withstand a 5000N radial and a 3000N thrust load. The life of the bearing expected to be at least 1000hrs.

8M

b) Define the static and dynamic load carrying capacities of roller bearing. Write the expressions for the same.

6M

OR

4. A single-row deep groove ball bearing is used to support the lay shaft of a four speed automobile gear box. It is subjected to the following loads in respective speed ratios:

Gear	Axial Load(N)	Radial load(N)	%time engaged
First gear	3250	4000	1%
Second gear	500	2750	3%
Third gear	50	2750	21%
Fourth gear	Nil	Nil	75%

The lay shaft is fixed to the engine shaft and rotates at 1750 rpm. The static and dynamic load carrying capacities of the bearing are 11600 and 17600 N respectively. The bearing is expected to be in use for 4000 hours of operation. Find out the reliability with which the life could be expected.

14M

UNIT-III

5. Design a connecting rod for a high-speed IC engine using the following data:

Cylinder bore = 125 mm

Length of connecting rod = 300 mm

Maximum gas pressure = 3.5 MPa

Length of stroke = 125 mm

Mass of reciprocating parts = 1.6 kg

Engine speed = 2200 rpm

Assume suitable data and state the assumptions you make.

14M

OR

Code: 4G565

- 6. **a.** Why are connecting rods made of I sections?
 - **b.** What is the force on bolts of big end of connecting rod?
 - **c.** What is the difference between centre and overhung crankshafts?
 - **d.** Where do you use overhung crankshafts?
 - e. Where do you use centre crankshafts?

14M

UNIT-IV

7. What do you mean by closely coiled spring? How a closely coiled helical spring is modeled for stress analysis and derives the expression for stresses and defections.

14M

OR

8. It is required to select a V-belt drive to connect a 15 kW, 2880 rpm normal torque A.C. motor to a centrifugal pump, running at approximately 2400 rpm, for a service of 18 hours per day. The centre distance should be approximately 400 mm. Assume that the pitch diameter of the driving pulley is 125 mm.

14M

UNIT-V

- 9. A pair of spur gears with 20° pressure angle consists of a 25 teeth pinion meshing with a 60 teeth gear. The module is 5 mm, while the face width is 45 mm. The pinion rotates at 500 rpm. The gears are made of steel and heat treated to a surface hardness of 220 BHN. Assume that dynamic load is accounted by means of the velocity factor. The service factor and the factor of safety are 1.75 and 2 respectively. Calculate
 - (i) wear strength of gears;
 - (ii) the static load that the gears can transmit without pitting; and
 - (iii) Rated power that can be transmitted by gears.

14M

OR

- 10. a) State any two reasons for adopting involute curve for gear tooth profile.
- 4M
- b) In a pair of spur gears, the number of teeth on the pinion and the gear are 20 and 100 respectively. The module is 6 mm. Calculate
 - i. the centre distance:
 - ii. the pitch circle diameters of the pinion and the gear;
 - iii. addendum and dedendum:
 - iv. tooth thickness and bottom clearance;
 - v. the gear ratio.

10M

III B.Tech. II Semester Supplementary Examinations May 2018

Instrumentation and Control Systems

(Mechanical Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$)

		UNIT-I	
1.	a)	Explain about the Generalized measurement system and its functional elements.	8M
	b)	List the advantages of the electronic instruments over electrical and mechanical instruments.	6M
		OR	
2.	a)	Explain about LVDT with a neat sketch.	8M
	b)	Explicate the working principle of variable inductive transducers.	6M
		UNIT-II	
3.		Describe the principle of operation of a McLeod gauge with a neat sketch and mention its applications, merits and demerits.	14M
		OR	
4.	a)	Explain the working principle of ultrasonic flow meter.	6M
	b)	Describe the radiation pyrometer with a neat sketch.	8M
		UNIT-III	
5.	a)	Explain briefly about the different types of torsion meters.	10M
	b)	Discuss the working principle of elastic load cells.	4M
		OR	
6.	a)	Describe briefly about the Strain gauge accelerometer with a neat sketch.	7M
	b)	How can seismic instruments can be used as an accelerometer?	7M
		UNIT-IV	
7.	a)	Explain briefly about resistance strain gauges.	7M
	b)	Describe about temperature compensation in strain gauges.	7M
		OR	
8.	a)	Discuss briefly about strain measuring techniques.	7M
	b)	Distinguish the bonded and unbounded type of resistance strain gauges.	7M
_	,	UNIT-V	
9.	a)	Explain briefly about the Servomechanisms.	7M
	b)	Discuss about any three methods of block diagram reduction.	7M
40	_ \	OR	71.4
10.	a)	Represent the mathematical models for thermal systems with an example.	7M

b) Sketch and explain Mason's rule?

7M

R-14

Hall Tick	ket Nur	mber :										
Code: 40	G566									R	2-14	
		ch. II S	emest	er Sur	plen	nentar	y Exa	minati	ons M	ay 201	8	
				•	•	Nanag	•			,		
						al Engin						
Max. M	arks: 7	0	,	, ,,,,,,,,,		<u>-</u>	00	9 1		Time	: 3 Ho	urs
Ansv	wer all	five units	by cho	oosing	one qu	estion f	rom e	ach unit	(5 x 14	$4 = 70 M_{\odot}$	arks)	
					***	*****						
4						UNIT-						4.48
1.	Expia	ain about	tne toui	teen pr	incipies		agemei	nt.				141
2.	Disci	iee in di	etail ah	out Lin	a and	OR Staff or	raniza	tion with	flow	diagram.	Δlso	
۷.		ain the me								ulagraili.	AISU	141
	ОХРІС		orno ario	domoi	110 01 21	UNIT-		garnzane				
3.	Defin	e plant la	avout. F	xplain (clearlv			vpes of	plant la	yout with	neat	
	sketo	•	,		,			71-00-01		,		141
						OR						
4.	The	data per	taining	to a pr	oject n	etwork	is give	n below	Indire	ct cost c	of the	
	proje	ct is Rs.	150 per	week.								
		Activity	, No	mal du		Cost		h Duratio	n Co	ost (Rs.)		
		,	'	(week	s)	(Rs.)	()	weeks)				
		1-2 1-3		<u>4</u> 8		400 250		3 5		775 475		
		2-3		6		350		4		450		
		2-4		9		450		7		800		
		3-4		5		300		3		600		
	i)		he proje									
	ii)) Detern	nine the	optimu	m dura			m cost o	f the pr	oject.		14N
_ 、						UNIT-I						
5. a)		e Method	•	•		•			•			07N
b)	Distir	nguish be	tween r	nicro-m	otion a		o-motio	n studies	S .			071
0 ->	1:-4-	حاجبي احجب	:		_ 4	OR						0.48
6. a)		and expla			• •					:4 :-	40.55	04N
b)		-			_					n item is er 8 hour s		
	(i)					for the o			iules pe	i o nour s)	
	(ii)						•		nany to	sts per 8	hour	
	(")					ne avera	•	y, 110W 11	idily to	oto per o	Hour	
	(iii)			•			-	ate is Rs	s. 10 pe	r hour, w	hat is	
	()	-	ndard la						о ро			101
					. [UNIT-I	V					
7. a)	Expla	ain about	various	costs a	associat			ry.				071
b)	Write	short no	te on St	ores ma	anagen	nent and	Stores	records				07N
,					J	OR						
8. a)	Distir	nguish be	tween i	nspectio	on and	quality c	ontrol.					071
b)	Expla	ain about	double	samplir	ng plan	with an	exampl	e.				071

OR

UNIT-V

10. Define wage incentive. Explain about any three types of wage incentive schemes. 14M

Clearly explain about the functions of HRM.

9.

14M

Codo: 10563						ļ	R-14	
Hall Ticket Number:								

III B.Tech. II Semester Supplementary Examinations May 2018

	•••	Metrology and Surface Engineering	
		(Mechanical Engineering)	
		Time: 3 Hould House Units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************	
		UNIT-I	
1.	a)	Define Fit. Give classification of different types of fits and explain each of them with suitable example.	7M
	b)	A hole and mating shaft are to have a nominal assembly size of 40 mm. The assembly is to have a maximum clearance of 0.15 mm and a minimum clearance of 0.05 mm. The hole tolerance is 1.5 times the shaft tolerance.	
		Determine the limits for both hole and shaft.	7M
		OR	
2.	a)	What are various types of plug gauges? Sketch any two of them.	7M
	b)	State and explain the "Taylor's principle of gauge design".	7M
		UNIT-II	
3.	a)	Explain the working principle of micrometer with help of neat sketch. What is the function of rachet in micrometer?	7M
	b)	With a neat sketch describe a method of measuring unknown angle of a component using sine bar.	7M
		OR	
4.	a)	Describe the working of NPL flatness interferometer with a neat sketch.	7M
	b)	Explain the working principle of an Autocollimator with a diagram.	7M
		UNIT-III	
5.		State and explain the different methods of measuring primary texture of a surface	14M
		OR	
6.	a)	Describe the working principle and advantages of electrical comparator with help of sketch.	8M
	b)	Differentiate between mechanical and pneumatic comparators.	6M
		UNIT-IV	
7.	a)	Derive the formula for measuring the effective diameter of thread by 3-wire method.	7M
	b)	With the aid of neat sketch explain the principle of Tool maker's microscope.	7M
		OR	
8.	a)	Explain the measurement of gear tooth thickness with aid of neat sketch.	8M
	b)	What are Coordinate measuring machines (CMM)? Mention their types. UNIT-V	6M
9.		Explain with suitable sketches about various alignment tests performed on a lathe.	14M
		OR	
10.	a)	What is overlay coating? How is it produced?	7M
	b)	What is surface treatment process? Explain briefly.	7M