\square
Hall Ticket Number :

Code: 4G565

III B.Tech. II Semester Supplementary Examinations October 2020

Design of Machine Elements-II

(Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Discuss the selection of bearing parameters in the design of Journal bearings.
b) Design a journal bearing for a centrifugal pump from the following data :

Load on the journal = 20000 N ; Speed of the journal = 900 r.p.m.; Type of oil is SAE 10, for which the absolute viscosity at $55^{\circ} \mathrm{C}=0.017 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$; Ambient temperature of oil $=15.5^{\circ} \mathrm{C}$; Maximum bearing pressure for the pump $=1.5 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate also mass of the lubricating oil required for artificial cooling, if rise of temperature of oil be limited to $10^{\circ} \mathrm{C}$. Heat dissipation coefficient $=1232 \mathrm{~W} / \mathrm{m}^{2} /{ }^{\circ} \mathrm{C}$.

OR

2. a) Explain with reference to a neat plot the importance of the bearing characteristic curve
b) Enumerate the design procedure for sliding contact bearing?

UNIT-II

3. a) Discuss the considerations in the design of Piston head.
b) A four stroke diesel engine has the following specifications :

Brake power $=5 \mathrm{~kW}$, Speed $=1200 \mathrm{rpm}$, Indicated mean effective pressure $=0.35 \mathrm{~N} / \mathrm{mm}^{2}$, Mechanical efficiency $=80 \%$.
Determine: i.bore and length of the cylinder ii. Thickness of the cylinder head and 3.Size of studs for the cylinder head.

OR

4. a) Explain briefly about the whipping stress induced in the connecting rod.
b) Discuss briefly about the design procedure of a Connecting rod with a neat sketch.

UNIT-III

5. Describe the procedure for the design of piston

OR

6. Design a connecting rod for an I.C. engine running at 1800 r.p.m. and developing a maximum pressure of $3.15 \mathrm{~N} / \mathrm{mm}^{2}$. The diameter of the piston is 100 mm ; mass of the reciprocating parts per cylinder 2.25 kg ; length of connecting rod 380 mm ; stroke of piston 190 mm and compression ratio $6: 1$. Take a factor of safety of 6 for the design. Take length to diameter ratio for big end bearing as 1.3 and small end bearing as 2 and the corresponding bearing pressures as $10 \mathrm{~N} / \mathrm{mm}^{2}$ and $15 \mathrm{~N} / \mathrm{mm} 2$. The density of material of the rod may be taken as $8000 \mathrm{~kg} / \mathrm{m}^{3}$ and the allowable stress in the bolts as $60 \mathrm{~N} / \mathrm{mm}^{2}$ and in cap as $80 \mathrm{~N} / \mathrm{mm}^{2}$. The rod is to be of I-section for which you can choose your own proportions. Use Rankine formula for which the numerator constant may be taken as 320 $\mathrm{N} / \mathrm{mm} 2$ and the denominator constant $1 / 7500$
7. maximum presur $3.15 \mathrm{~N}^{2} \mathrm{~mm}^{2}$ The diameter of 100 mm ; mass of

UNIT-IV

7. a) Briefly explain the concept of surge in springs?
b) Design a helical compression spring for a maximum load of 1000 N for a deflection of 25 mm using the value of spring index as 5 . The maximum permissible shear stress for spring wire is 420 MPa and modulus of rigidity is $84 \mathrm{kN} / \mathrm{mm}^{2}$.
8. a) Distinguish between flat belt and V - belt drives?
b) A belt 100 mm wide and 10 mm thick is transmitting power at 1000 metres $/ \mathrm{min}$. The net driving tension is 1.8 times the tension on the slack side. If the safe permissible stress on the belt section in 1.6 MPa , calculate the maximum power that can be transmitted at this speed. Assume density of the leather as $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
Calculate the absolute maximum power that can be transmitted by this belt and the speed at which this can be transmitted.

UNIT-V

9. a) What are the advantages of the Power screws?
b) A double-threaded power screw, with ISO metric trapezoidal threads, is used to raise a load of 300 kN . The nominal diameter is 100 mm and the pitch is 12 mm . The coefficient of friction at screw threads is 0.15 . Neglecting collar friction, Calculate : (i) torque required to raise the load (ii) torque required to lower the load and (iii) efficiency of the screw.

OR

10. a) Find an expression for h^{2} for rectangular section. 4 M
b) Determine:
(i) Position of neutral axis and (ii) maximum and minimum stresses when a curved beam of circular section of diameter 100 mm is subjected to pure bending moment of +11.5 kNm . The radius of curvature is 100 mm .
Hall Ticket Number :
\squareCode: 4G566
III B.Tech. II Semester Supplementary Examinations October 2020

Industrial Management

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define Management and explain in detail, the evolution of management thought.

OR

2. Discuss in detail, the basic concepts related to an organization.

UNIT-II

3. a) What are the objectives of plant Layout? What are the factors affecting plant location?
b) Compare two types of production systems with advantages and limitations. 6M

OR

4. Explain in detail, the components of Project Management.

UNIT-III
 5. Define method study. What are the objectives and steps involved in it?
 OR

6. Explain the concept and different methods of performance rating.
UNIT-IV
7. Explain in detail, the objectives and functions of Inventory Management. 14M
OR
8. Define and explain in detail, the concept of TQM. 14M
UNIT-V
9. a) Define merit rating. What are the objectives of merit rating? 7Mb) How is merit rating difference from job evaluation?

OR

10. a) Differentiate between marketing and selling.6M
b) Explain product life cycle. 8M

Code: 4G563

III B.Tech. II Semester Supplementary Examinations October 2020
Metrology and Surface Engineering
(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

> UNIT-I

1. a) Define

Tolerance, Allowance, Precision and Accuracy.
b) Differentiate between unilateral and bilateral system of limits and fits

OR

2. A hole and mating shaft are to have a nominal assembly of size 50 mm . The assembly is to have a maximum clearance of 0.15 mm and a minimum clearance of 0.05 mm . The hole tolerance is 1.5 times the shaft tolerance. Determine the limits for both hole and shaft by using
i) Hole basis system
ii) Shaft basis system.

UNIT-II

3. a) Distinguish between 'line standards' and 'end standards'.
b) Explain by means of a simple sketch the use of a sine bar as a sine center for testing the taper.

OR

4. a) What are the measuring techniques employed for optical projector?
b) Discuss about the instruments used for flatness measurement.

UNIT-III

5. List out the various mechanical comparators? Explain any one in detail with neat sketch.

OR

6. a) Explain numerical assessment of surface roughness. What are the disadvantageous to use CLA as compared RMS in the measurement of Surface roughness?

b) Explain why identical surface-roughness values do not necessarily represent the same type of surface.

UNIT-IV

7. Describe briefly the method of measurement of tooth thickness by constant chord method.
8. Discuss briefly co-ordinate measuring machine. State the advantages and possible sources of errors in CMM.

UNIT-V

9. Discuss with neatly drawn sketches the following tests on Lathe
a) Spindle center run out
b) Spindle taper bore run out.
c) Chunk run out.
d) Cross slide alignment.

OR

10. List out various diffusion coating process and explain them in detail.
