		all Ticket Number :									
	-									R-14	
	Cod	le: 4G564 III B Tech II Se	mester	Supr	leme	ntan	/ Exa	minat	tions N	Nov/Dec 2018	
				oplied (Mec	Ther	mod	ynan	nics-l		1017000 2010	
	Ν	Nax. Marks: 70 Answer all five un	its by ch		one q	uestio	-		unit (5	Time: 3 Hours 5 x 14 = 70 Marks)	
	Not	e: Refrigeration & A Symbols and abb			tables				ning.		
				ι	INIT-I						
		In a gas turbine power plant, air is compressed through a pressure ratio of 7:1 from 20°C. After compression air is heated to a maximum permissible temperature of 800°C and expanded in two stages. Expansion ratio in each stage of turbine is 2.45. The air is being reheated in between the expansion stages to 750°C. Exhaust gases from turbine stages are preheated in a heat exchanger with an effectiveness of 0.8. Calculate: (i) The cycle efficiency, (ii) The work ratio, (iii)The work done per kg of air.									
		Assume the isentrop	ic efficier	icles of	compre	essor a OR		oines a	re 0.82	and 0.84 respectively.	
2.	a)	Briefly explain the wo		-			-				
	b)	Write the basic differ	ences be		Propelle NIT–II	er Jet a	and Tu	bojet e	ngines.		
5.		and compresses it fro air is cooled to 30°C. expansion with index for production of 145	om 1.2 ba The amb 1.34. Ca 50 kg of i	ar to 6.4 ient terr lculate: ce per o	bar. Th peratur (i) COF day at	ne inde re is 20 9 of the 0°C fro	ex of co 0°C. Ai e syster om wa	ompres r expar n, (ii) Q ter at 2	sion be ids in ar uantity 0°C., (ii	air from cold room at -6°C ing 1.24. The compressed n expander in an polytropic of air circulated per minute ii) Capacity of the plant in K for air and latent heat of	
		5				OR					
•	a)	Write the merits and system.	l demerit	s of vap	our co	mpres	sion re	efrigera	tion sys	stem over air refrigeratior	
	b)	Discuss briefly with refrigerant on perform				e effec	ct of (i	Sub-(Cooling	and (ii) Super-Heating o	
_			()	_	NIT–III			. ,.			
-		Describe the working	of a LiBi	r-H ₂ O va	apour a	bsorpt OR		rigerati	on syste	em with a neat sketch	
-		are 125°C, -10°C an	d 32ºC re	espectiv	ely. Th	eratur e actu	es in a al COI	P is 55	% of the	rption refrigeration system eoretical COP. If the plan calorific value of fuel is 42	
		MJ/kg.					·				
-		saturated air at 15°C Neglecting any press	. The ma sure drop	60% rel iss flow , calcula	rate of ite:	umidity atmos				dehumidified to a state o e dehumidifier is 50 km/h	
		(i) The mass (ii) The quan		-		ed					
						OR					
	a)	Describe the working	of a sun	nmer air	-condit	ioning	systen	n with a	a neat sl	ketch.	
	b)	Explain the concepts	of (i) RS	HF and	(ii) GS	HF					
			t impuriti		NIT–V nosphe	ric air	? Briefl	y expla	in the e	ffect of these impurities or	
•		human health.									
•											
).	a)	Briefly explain the wo	orking of :	an imna	ct type	OR humid		th a ne	at sketr	ch.	

Hall	Tick	et Number :	_			
Code	: 4G5	565 R-14				
l	II B.T	ech. II Semester Supplementary Examinations Nov/Dec 2018				
		Design of Machine Elements-II				
Mary	110	(Mechanical Engineering)				
	-	rks: 70 Time: 3 Hour er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	ſS			
7.	115 ** C	**************************************				
		UNIT–I				
1.	a)	Discuss in detail the design procedure for journal bearing.	8M			
	b)	Discus the principle of hydrodynamic lubrication.	6M			
		OR				
2.		Design a journal bearing for a centrifugal pump with the following data. Diameter				
		of journal=140mm, load on the bearing=50kN and speed of the journal = 800rpm.	14M			
0	-)					
3.	a)	Why are taper roller bearings used in pairs? Discuss.	6M			
	b)	A ball bearing with a dynamic load capacity of 22.8 kN is subjected to a radial load of 10 kN. Calculate (i) the expected life in million revolutions that 90% of the				
	bearings will reach; (ii) the corresponding life in hours, if the shaft is rotat					
		1450 rpm; and (iii) the life that 50% of the bearings will complete or exceed before				
		fatigue failure.	8M			
		OR				
4.		A system involves four identical ball bearings, each subjected to a radial load				
		of 2500 N. The reliability of the system, i.e., one out of four bearings during the lifetime of five million revolutions, is 82%. Determine the dyn				
		load carrying capacity of the bearing, so as to select it from the manufacturer's				
		catalogue based on 90% reliability.	14M			
		UNIT–III				
5		Design a side crank for an IC engine to the following specifications. Bore				
		diameter=150mm, stroke=190mm, length of the connecting rod=380mm,				
		maximum pressure = 320Mpa, RPM=600, brake mean effective pressure =70Mpa. Design stress for the crank shaft=30Mpa.	14M			
		OR	1-111			
6		Discuss in detail the design procedure of connecting rod for an IC engine. State				
Ŭ		the significance of whipping stresses.	14M			
		UNIT-IV				
7	a)	How leaf spring is modeled for stress and deflection analysis. Discuss the				
		importance of uniform strength beam.	6M			
	b)	A semi-elliptic leaf spring consists of two extra full-length leaves and six				
		graduated -length leaves, including the master leaf. Each leaf is 7.5 mm thick and 50 mm wide. The centre-to-centre distance between the two eyes is 1 m.				
		The leaves are pre-stressed in such a way that when the load is maximum,				
		stresses induced in all the leaves are equal to 350 N/mm2. Determine the				
		maximum force that the spring can withstand.	8M			
		OR				
8.		Discuss the V-belt selection procedure from manufactures catalogue.	14M			

UNIT–V

- 9. A pair of spur gears with 20° pressure angle consists of a 25 teeth pinion meshing with a 60 teeth gear. The module is 5 mm, while the face width is 45 mm. The pinion rotates at 500 rpm. The gears are made of steel and heat treated to a surface hardness of 220 BHN. Assume that dynamic load is accounted by means of the velocity factor. The service factor and the factor of safety are 1.75 and 2 respectively. Calculate
 - i. wear strength of gears;
 - ii. the static load that the gears can transmit without pitting; and
 - iii. rated power that can be transmitted by gears.

OR

- 10. a) State any two reasons for adopting involute curve for gear tooth profile. 4M
 - b) In a pair of spur gears, the number of teeth on the pinion and the gear are 20 and 100 respectively. The module is 6 mm. Calculate
 - (i) the centre distance;
 - (ii) the pitch circle diameters of the pinion and the gear;
 - (iii) addendum and dedendum;
 - (iv) tooth thickness and bottom clearance;
 - (i) the gear ratio.

10M

14M

Hall ⁻	Tick	et Number :							
Code	e: 40	G561 R-14	1						
	III B.	Tech. II Semester Supplementary Examinations Nov/Dec 2018							
		Instrumentation and Control Systems							
		(Mechanical Engineering)							
		Time: 3 H Time: $3 H$							
AIISV	vei	all five units by choosing one question from each unit (5 x 14 = 70 Ma	iks j						
		UNIT–I							
1.	a)	Explain the Dynamic characteristics of measuring instruments.	7						
	b)	Discuss briefly about the classification of instruments.	7						
		OR							
2.	a)	Classify the different types of transducers. Explain the working principle of Capacitive transducers.							
	b)	Discuss about the Static characteristics of measuring instruments.	8						
		UNIT–II							
3.		Describe the principle of operation of a lonization gauge with a neat sketch							
		and mention its applications, merits and demerits.	14						
4.	a)	Explain the working principle of Hot wire anemometer.	6						
т.	b)								
	0)								
5.	a)	Explain the working principle of Pneumatic load cell with a neat sketch.	7						
	b)	Describe the working principle of Piezoelectric accelerometer with a neat sketch.	7						
		OR							
6.	a)	Explain the strain gauge torsion meter with a neat sketch.							
	b)	Illustrate the working principle of Vibrometer with a neat sketch.							
		UNIT–IV							
7.	a)	Discuss briefly about the Strain gauge alloys and materials.	7						
	b)	Explain about resistance strain gauges with a neat sketch.	7						
		OR							
8.	a)	Classify the bonding techniques and explain with any one method.	7						
	b)	Describe about temperature compensation in strain gauges.	7						
0		UNIT-V							
9.	a)	Explain the differences between Open loop and Closed loop systems with suitable examples.	1 8						
	b)								
		OR							
10.	a)	Represent the Mathematical models for Mechanical systems with an example							
	b)	Discuss briefly about the Signal flow graphs.	6						