F	Hall Ticket Number:	
Co	R-14	
	III B.Tech. II Semester Supplementary Examinations May 2019 Digital Signal Processing (Electronics and Communication Engineering)	
Μ	Nax. Marks: 70 Time: 3 Ho Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) *****	urs
	UNIT-I	
a)	Examine the following systems for linearity, time-invariance and stability (i) $y(n) + y(n-1) = x(n) + x(n-2)$	
	(ii) $y(n) = a^{\{x(n)\}}$	7
b)	A discrete time system is represented by the following equation	
	$y(n) = (3/2) y(n-1) - (\frac{1}{2}) y(n-2) + x(n)$ with initial conditions $y(-1) = 0$, $y(-2) = -2$ and $x(n) = (\frac{1}{4})^n u(n)$.	
	Determine the total response of the system.	7
٥)	OR State and prove the following DES properties	
a)	State and prove the following DFS properties (i) Linearity (ii) Time shifting	
	(iii) Symmetry (iv) Periodic Convolution	8
b)	If the DFT $\{x(n)\} = X(k)=\{4, -j2, 0, j2\}$, using properties of DFT, find DFT of $x(n - 2)$.	6
a)	Compare DIT and DIF algorithms.	4
b)	Develop the necessary three stage computation equations for radix-2 DIT FFT method. OR	10
a)	Find the DFT of the sequence $x(n) = \{2,1,2,1,2,1,2,1,\}$ using radix-2 DIF-FFT algorithm.	8
b)	Find the IDFT of the sequence	
	X(k) = { 10, -2+j2, -2, -2-j2 } using DIT algorithm.	6
	UNIT-III	
a)	For the given specifications design an analog Butterworth filter.	
	0.9 H(j) 1 for 0 0.2 . H(j) 0.2 for 0.4 .	7
b)	Determine the transposed direct form-II for the given system	•
-,	$y(n) = \frac{1}{2} y(n-1) - \frac{1}{4} y(n-2) + x(n) + x(n-1)$	7
	OR	
a)	Explain FIR filter design procedure using windowing method.	4
b)	Design a digital FIR low pass filter using rectangular window by taking 9 samples of w(n) and with a cutoff frequency of 1.2 rad/sec.	10
-1	UNIT-IV	
a)	(i) Describe the Decimation process by a factor D(ii) Describe the interpolation process by a factor	7
b)	Discuss about sampling conversion by a rational factor /D. Obtain necessary equations.	7
	OR Discuss various filter design methods and implementations for sampling rate conversion.	14
	What are the applications of DSP? Explain any one application clearly.	14
a)	OR Explain the process of signal compression and decompression	7
а) b)	Discuss about oversampling of D/A Converter	7
,	****	

Hall Ticket Number :	1									
Code: 4G363									R-14	
	Semest	er Sur	oplem	ento	ırv Fx	amina	noitr	s May	/ 2019	

		III B.Tech. II Semester Supplementary Examinations May 2019	
		Microprocessors and Interfacing	
		(Electronics and Communication Engineering)	
	Ν	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks ***********************************	
		UNIT-I	
1.	a)	Explain the queue structure of 8086 and its limitations	9M
	b)	What is addressing mode? Explain the following addressing modes of 8086 with	
	٠,	suitable examples: (i) Register addressing, (ii) Based indexed addressing,	
		(iii) Indirect addressing, (iv) Immediate addressing	5M
		OR	
2.	a)	Differentiate between procedure and Macros	6M
	b)	Describe the significance of following pins of 8086	
		(i) ALE, (ii) RESET, (iii) \overline{TEST} , (iv) M/\overline{IO}	8M
		UNIT-II	
3.	a)	Write a program to interface stepper motor to 8086	5M
	b)	Interface ADC 0800 with 8086 using 8255 ports. Use port A of 8255 for transferring	
	,	digital data output of ADC to the CPU and port C for control signals. Assume that an	
		output is present at I/P2 of the ADC and a clock input of suitable frequency is	
		available for ADC. Draw the schematic and write the required ALP.	9M
		OR	
4.	a)	Interface an 8255 with 8086 at 80H as an I/O address of port A. Interface five 7	
		segment displays with the 8255. Write a sequence of instructions to display 1, 2, 3, 4, and 5 over the five displays continuously as per their positions starting with 1 at the	
		least significant position.	9M
	b)	Discuss the transfer modes of 8237	5M
	υ,	UNIT-III	Oivi
5.	a)	Distinguish between programmed I/O and interrupt driven I/O.	5M
	b)	What are the sequence of action taken by 8086 and the device, when a device	
	~,	interrupts 8086 over INTR line? Explain about the software and reserved internal	
		interrupts of 8086.	9M
		OR	
6.	a)	Explain the modes of operation of 8253 PIT with necessary diagram	7M
	b)	Demonstrate the initialization command words of 8259A PIC	7M
		UNIT-IV	
7.	a)	Design a hardware interfacing circuit for interfacing 8251 with 8086. Set the 8251A in	
		asynchronous mode as a transmitter and receiver with even parity enabled, 2 stop	
		bits, 8-bit character length, frequency 160 kHz and baud rate 10 K. Write an ALP to	71.1
		transmit 100 bytes of data string starting at location 2000:5000H	7M
	b)	From the above data in Q.7 (a), Write an ALP to receive 100 bytes of data string and store it at 3000:4000 H.	7M
		OR	/ IVI
8.	a)	Draw the architectural block diagram of 8251A and explain the function of each block	9M
	b)	What is current loop? Explain how 20 mA current loop is used to provide serial data	
	- /	communication between 8086 and a peripheral.	5M
		UNIT-V	
_		· · · · · · · · · · · · · · · · · · ·	

List the salient features of Pentium and Pentium pro processors 9. 14M

10. Draw and explain architecture of 80286 processor. 14M