Hall Ticket Number :							
		<u> </u>				_	R-15

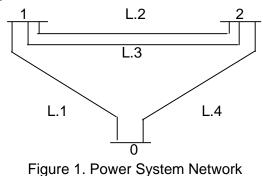
Code: 5G261

Max. Marks: 70

III B.Tech. II Semester Supplementary Examinations February 2021

Power System Analysis

(Electrical and Electronics Engineering)


Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

Marks CO Blooms Level

- 1. a) Discuss with an example the procedure to form Zloop using singular transformation 7M
 - b) Obtain the Y-Bus of the power system shown in below figure 1. Take reactance of each line as j0.3 p.u.

7M

OR

- a) Write algorithm for the modification of Zbus matrix for addition of an element. (type1 Modification)
 - b) What is a partial network? Explain with an example.

7M

UNIT–II

3. The load flow data for the sample power system are given below. The voltage magnitude at bus 2 is to be maintained at 1.04 p.u. The maximum and minimum reactive power limits of the generator at bus 2 are 0.35 and 0.0 p.u respectively. Determine the set of load flow equations at the end of first iteration by using Newton-Raphson method.

Impedance for system

Bus Code	Impedence	Line charging
1-2	0.08+j0.24	0.0
1-3	0.02+j0.06	0.0
2-3	0.06+j0.18	0.0

Schedule of generation and loads:

Ruo oodo	Voltaga	Gen	eration	Load			
Bus code	Voltage	MW	MVAR	MW	MVAR		
1	1.06+j0.0	0	0	0	0		
2	1.0	20	0	50	20		
3	1.0	0	0	60	25		

14M

6M

OR

- 4. a) Write algorithm for Newton -Raphson method of load flow with polar coordinates 8M
 - b) Compare different load flow studies.

Code: 5G261

Write notes on: (i) Per Unit System (ii) Short circuit capacity of Bus.	6M
Two generators rated at 10 MVA, 11 KV and 15 MVA, 11 KV respectively are connected in parallel to a bus. The bus bars feed two motors rated 7.5 MVA and 10 MVA respectively. The rated voltage of the motors is 9 KV. The reactance of	
each generator is 12 % and that of each motor is 15 % on their own ratings. Assume 30 MVA, 10 KV base and draw reactance diagram	8M
OR	
Explain the principle of symmetrical components. Derive the equations to convert phase quantities into symmetrical components and symmetrical components into phase quantities.	7M
A 3-phase 37.5 MVA, 33kV alternator having $X_1=0.18pu$, $X_2 = 0.12pu$ and $X_0=0.10pu$ based on its rating, is connected to a 33 kV overhead line having $X_1=6.3$ ohms, $X_2 = 6.3$ ohms and $X_0 = 12.6$ ohms per phase. A single line to ground fault occurs at the remote end of the line. The alternator neutral is solidly	
grounded. Calculate fault current.	7M
UNIT–IV	
What is meant by power system stability? How they are classified?	6M
A generator rated 75MVA is delivering 0.8 p.u power to a motor through a transmission line of reactance j0.2 p.u. The terminal voltage of the generator is 1.0p.u and that of the motor is also 1.0 p.u. Determine the generator emf behind	
transient reactance. Also find the maximum power that can be transferred.	8M
OR	
Derive power flow equations in terms of A, B, C, D constants.	6M
A 200KM, 3-phase, 50Hz transmission line has the data $A=D=0.928 \angle 1.2^{\circ}$, $B=131.2 \angle 72.3^{\circ}$ per phase. The sending end voltage is 230 kV. Determine the maximum power that can be transmitted at the receiving end voltage of	
220kVand the corresponding power required at the receiving end.	8M
UNIT–V	
Draw a diagram to illustrate the application of equal area criterion to study transient stability when there is a sudden increase in the input of generator.	6M
Find the critical clearing angle for the system shown in fig. for a three-phase fault at the point P. The generator is delivering 1.0 pu power under prefault conditions.	

UNIT-III

5.

6. a)

7.

8.

9.

a) b)

a) b)

a)

b)

b)

a) b)

|E'| = 1.2 pu

OR

8M

- 10. a) Describe the methods of improving transient stability.
 6M
 - b) State and explain equal area criterion. How do you apply equal area criterion to find the maximum additional load
 8M

(Cod	le: 5G264													R-15		
	200	III B.Tech. II Se	emest	ter	Sup	ple	mer	ntary	/ Exc	amir	natio	ons I	- ebru	ary 20	021		
						•		and									
			(Elec	ctri	cal	and	Elec	tron	ics E	ngir	eeri	ng)					
		x. Marks: 70 Answer all five uni	te by c	-ho	osin	aon		octio	n fra	mor	nch i	unit (5×1		e: 3 Ho	ours	
			IS DY C	10	USII ų	y on		*****	1110			ן ווו נ	5 7 14	- 70 N	nuiks j		
															Marks	со	Bloo Lev
							UN	IT–I									Lev
	a)	Explain the followi	ing :				••••										
		i) Symmetrical bre	-	-	-		-				-	-	-		7M	1	
	b)	A circuit breaker i at 220kV. The ma	•			•		•									
		current. Determine	0														
		of the breaker who					-			-				• •			
		value. The stray c	apacita	anc	e is	3250	μF.	The	induc	ctanc	e is 4	40 H			7M	4	
							OR										
	a)	What are the diff															
		medium is the crit circuit breaker is r					e voi	lage	IOF V	VIICI	ар	anici	Jiar ra	nge or	7M	1	18
	b)	Explain the operat					ns of	Vaco	um (Circu	it Bre	eake	rs.		7M	1	118
							UN	IT–II									
	a)	Explain the opera	ation o	of a	dire	ction	al ov	/er c	urrer	nt rel	ay w	rith a	neat	circuit	7M	2	
	b)	diagram. Explain in detail al	hout th	no II	тмп	rela	ve cł	arac	torist	tice					7M	2	
	0)		bouti			TCIQ	OR	arac	CIIS						7 1 1 1	2	
	a)	Derive the Univers	sal Tor	raue	e eau	Jatio		elav.							7M	2	
	b)	Compare Direction		•	•			•							7M	2	
	,	·		,				T–III	,								
	a)	Explain briefly abo	out stat	tor	fault	prote	ectio	n in g	ener	ator					7M	3	
	b)	A 3 – phase, 2 po												•			
		a resistance of 3											•				
		which operates u Determine % of w	•								a 20)%	of tui	l load.	7M	4	
		Determine 70 of W	inung	pre	1001	su aç	OR	t car							7 1 1 1	т	
	a)	Explain the Buchh	oltz re	lav	ope	ration	-	nan	eat s	ketcł	h				7M	3	
	b)	Explain the percer			•							or tra	ansfori	ners.	7M	3	118
	/							T–IV									
	a)	Explain the princip	ole of c	ope	ratio	n of a	a Tra	nslay	Rel	ay pr	otec	tion f	or fee	ders	7M	3	811
	b)	Differentiate betwe			les d	of a v	vave	trap	and	coup	ling o	capa	citors i	n	714	2	
		carrier current pro	tectior	ו.			OR								7M	3	
	2)	Evoluin the opera	tion of		oorri	or ou	-	nrot	ootio	n of	trope	mice	sion lir	o with			
	a)	Explain the opera a neat schematic			Jan	ercu	nem	ριοι	eciio		llant	511153			7M	3	
	b)	What do you unde	•		azo	one c	of pro	tectio	on? [Discu	ISS Va	ariou	s type	s of			
		Zones of protectio		,			•		1						7M	3	1&
	-)	Difforantiata batu			ao d	livort	-	T-V	urao	aba	orbo	· with	. ekoto	h	714	0	
	a) b)	Differentiate betw			-				-					41.	7M 7M	3	
	b)	What are various	metho	us (Joint	nonly	y use OR	u 10ľ	neu	uai g	roun	ung	ſ		7M	3	
	а)	What is lightning	2 Lint	ita	nro	norti		Jieou	cc +	he r	nothe	de 4	of pro	taction			
	a)	against lightning.	: LISI	115	μυ	peru	ບ ວ. I	1300	ວວເ			<i>i</i> us (n hio		7M	3	18
	b)	What is reactance g	roundi	na?	Men	ition i	ts ad	vanta	ges a	and di	sadv	antac	jes.		7M	3	.0
				5	_ ` `	-		**					•			-	

	С	Code: 5G262												R-1	J	
		III B.Tech. II Se						-						y 2021		
		M		-			s an						S			
		Marka Marka 70	(Ele	ctric	al a	nd E	Elect	ronio	cs Er	ngine	eerir	ng)	-			10
		Max. Marks: 70 Answer all five unit	sbv	chor	osina	one	e que	stion	fron	n ea	chu	nit (.		Time: 3 70 Mark		IS
			,			0.10	*****				00			• • • • • • • • • •		
														Marks	со	Bloom Level
				Γ	U	NIT-	-1									2010
1.	a)	Describe about the s	ignal	s inv	/olve	d in	mini	imum	n mo	de d	opera	tion	of 8086	i		
		microprocessor based	•				•	•						7M	1	
	b)	Explain about the follo	wing	asse	emble	er dir	ective	es: E	NDP	, EQ	U, E	VEN	, EXTRN			
		with examples.				~ ~								7M	1	2
	、	–				OR	• ·									
<u> </u>	a)	Explain the following in Manipulation Instruction						•				•	.,			
		Instructions (iv) Arithme		-			ution	man	51011	113110		13 (11 <i>)</i>	menup	8M	1	
	b)	Write an assembly lan					8086	to so	ort th	e giv	ven 'l	N' nu	mbers in			
		ascending order.		•	•					•				6M	1	3
					U	NIT–										
3.	a)	What is DMA? Explain							•					7M	2	1
	b)	Explain the following da	ata tra	ansfe	rs (i)		gramr	ned I	/O (ii) Inte	errupt	ed I/	0.	7M	2	5
						OR										
1.	a)	With neat functional bl interface and its operat		-		expla	in the	e 825	55 pr	ogra	mma	ble p	eriphera	8M	2	5
	b)	What is interrupt vector	-				lain i	te etr	uctur	Δ				6M	2	1
	0)		labit			ייש ו –דוו		13 311	uctui	с.				OW	2	ľ
5.	a)	What is a USART? With	h a b	ock (in the	e arch	nitect	ure o	f US	ART.	8M	4	5
	b)	Draw the conversion c			•		•							ì		
		interface.							-				-	6M	4	6
						OR										
5.	a)	Explain the pin structed		f RS	2320	C an	d dis	cuss	abo	ut vo	oltage	e and	d current			
		specifications of RS232												7M	4	5
	b)	Write an assembly lang	guage	e pro	gram	to ir	nitializ	ze 82	51 a	nd tra	ansm	it an	d receive		1	
		100 bytes of data.		Γ		NIT-I	V							7M	4	3
7.	a)	Explain briefly serial co	mmu	nicat				nd mo	odes	of 80	51			7M	5	5
	ي, b)	Explain bit level instruc										e exa	amples.	7M	5	2
	~)				••••	OR						• • •			Ū	-
3.	a)	Draw the internal RAM	merr	ory o	orgar		on of	8051	l mic	rocor	ntrolle	er an	d explain			
	,	in detail.		,	0								·	7M	5	6
	b)	Write an 8051 assembl	y pro	gram	to e	valua	ate the	e fac	torial	of ar	n inte	ger r	umber N			
		using recursive proced	ure.											7M	5	3
	,					NIT-									_	_
).	a)	Explain the features an												7M	5	2
	b)	Explain the PWM contr	oller	reatu	res ir		allable	ARL	JUIN	O mi	croco	ontro	ler.	7M	5	5
h	2)	Evoloin the factures ar	dan	licet	ione		<u>- 01/0</u>	niore	0051-					714	F	~
0.	,	Explain the features an											in	7M	5	2
	b)	Draw the block diagram features.	IULA	RDU	UNIN	THIC	ocont	uolieľ	and	expl		s ma	111	7M	5	6
							***							7 111	5	,

	Η	all Ticket Number :	R -	16	
(Co	de: 5G263	K-	15	
		III B.Tech. II Semester Supplementary Examinations Februar	y 2021	l	
		Power System Operation and Control			
		(Electrical and Electronics Engineering)			
	Mo		lime: 3		rs
		Answer all five units by choosing one question from each unit (5 x 14 = 2	70 Mar	ks)	
			Marka	00	Bloom
			Marks	CO	Leve
	,				
	a)	Explain the step by step procedure for computing economic allocation of	CM.		
		generation in a thermal station.	DIVI	CO1	I
	b)	In a thermal power station, incremental cost are given by the following			
		$dC_1/dP_1 = Rs.(0.15P_1+12);$ $dC_1/dP_2 = Rs.(0.21P_1+12);$			
		$dC_3/dP_3 = Rs.(0.21P_3+13);$ $dC_2/dP_2 = Rs.(0.05P_2+14);$			
		Where P_1 , P_2 and P_3 are the loads in MW. Evaluate the economical load allocation			
		between the three units, when the total load on the station is 300MW.	8M	CO1	١
		OR			
	a)	Give various advantages of general loss formula and state the assumptions			
	α)	made for calculating B _{mn} coefficients.	7M	CO1	
	b)	The incremental fuel cost for two plants are			
	~)	$dC_1/dP_1 = 0.075P_1 + 18 \text{ Rs./MWh}$			
		dC ₂ /dP ₂ =0.08P ₂ +16 Rs./MWh			
		The loss coefficients are given as $B_{11}=0.0015/MW$, $B_{12}=-0.0004/MW$ and			
		B ₂₂ =0.0032/MW for =25 Rs./MWh. Solve for the real power generations, total			
		load demand and the transmission power loss.	7M	CO1	II
		UNIT–II			
	a)	Explain clearly the mathematical formulation of optimal scheduling of			
		hydrothermal system with a typical example.	7M	CO2	I
	b)	In a two plant operation system, the hydro plant is operated for 10 hrs, during			
		each day and the steam plant is to operate all over the day. The characteristics			
		of the steam and hydro plants are:			
		CT=0.04PGT ² +30PGT+10 Rs.hr			
		WH=0.12 PGH ² +30PGH m ³ /sec			
		When both plants are running, the power owned from steam plant to load is 150 MW and the total quantity of water is used for the hydro plant operation			
		during 10 hrs is 150×10^6 m ³ . Determine the generation of hydro plant operation			
		of water used. Neglect the transmission losses.	7M	CO2	V
		OR			
	a)	Write short notes on unit commitment problem, load scheduling, and economic			
	~)	dispatch with a real time example.	7M	CO2	I
	b)	Using dynamic programming method, how do you find the most economical			-
	- /	combination of the units to meet a particular load demand?	7M	CO2	II
		combination of the units to meet a particular load demand?	ΛM	CO2	I

			Code	e: 5G20	63
5.	a)	UNIT-III Explain the mathematical modeling of speed governing system.	7M	CO3	II
	b)	Two turbo alternators rated for 110 MW and 220 MW have governor droop characteristics of 5% from no load to full load. They are connected in parallel to share a load of 250 MW. Determine the load shared by each machine assuming free governor action.	7M	CO3	IV
		OR			
6.	a)	Explain about the transfer function and block diagram representation of IEEE Type-1 model of excitation system.	7M	CO3	П
	b)	Explain the block diagram representation of an isolated power system with diagram.	7M	CO3	Ш
		UNIT–IV			
7.	a)	Explain the necessity of keeping frequency constant in a power system network.	7M	CO4	II
	b)	With a neat sketch of block diagram of two area load frequency control system, explain the operation under steady state condition, without any controllers.	7M	CO4	III
		OR			
8.	a)	With a neat block diagram explain the load frequency control for a single area system.	6M	CO4	II
	b)	Two generators rated for 250 MW and 500 MW are operating in parallel. The droop characteristics are 4% and 6% respectively. Assuming that the generators are operating at 50 Hz at no load, how a load of 750 MW would be			
		shared. What is the system frequency? Assume free governor action.	8M	CO4	
9.	a)	Explain clearly what you mean by compensation of line and discuss briefly different methods of compensation.	7M	CO5	II
	b)	A 440V, 3-Ø distribution feeder has a load of 100 KW at lagging p.f. with the load current of 200A. If the p.f. is to be improved, determine the following:			
		i) Uncorrected p.f. and reactive load			
		ii) New corrected p.f. after installing a shunt capacitor of 75 KVAR. OR	7M	CO5	
10.	a)	What is load compensation? Discuss its objectives in power system.	6M	CO5	II
	b)	The load at receiving end of a three-phase overhead line is 25.5 MW, power factor is 0.8 lagging, at a line voltage of 33 kV. A synchronous compensator is situated at receiving end and the voltage at both the ends of the line is maintained at 33 kV. Calculate the MVAR of the compensator. The line has a resistance of 4.5 ohms per phase and inductive reactance (line to neutral) of			
		20 ohms per phase.	8M	CO5	IV