		de: 5G565	R-14	5	
		III B.Tech. II Semester Supplementary Examinations January 2	2022		
		Design of Machine Elements-II			
		(Mechanical Engineering)			
		Tin swer any five full questions by choosing one question from each unit (5x14	ne: 3 ł = 70 M		
		*****	Marks	со	Blooms Level
		UNIT–I			
•	a)	Explain wedge film and squeeze film journal bearings.	6M	CO1	L2
	b)	List the design procedure for a Journal bearing.	8M	CO1	L1
		OR A full Journal bearing of 50 mm diameter and 100 mm long has a bearing			
-		pressure of 1.4 N/mm ² . The speed of the journal is 900 rpm and the ratio of the journal diameter to the diametral clearance is 1000. The bearing is lubricated with oil whose absolute viscosity at the operating temperature of 75°C may be taken as 0.011kg/m-s. The room temperature is 35°C. Determine the amount of artificial cooling required and the mass of the lubricating oil required if the difference between the outlet and inlet temperature of the oil is 10°C. The specific			
		heat of the oil as 1850 J/kg/°C	14M	CO1	L5
	a)	Explain the different types of antifriction bearings.	6M	CO2	L2
	b)	Determine the dynamic load carrying capacity of a deep groove ball bearing with the least bore size, and which is required to resist a radial load of 4 kN and an axial load of 3 kN. The shaft rotates at 1400 rpm. The bearing is required to be in operation for 12000 hours with 90% reliability.	8M	CO2	L5
		OR			
•	a)	A bearing is required to carry 4500 N stationery radial load. The shaft rotates at 1000 rpm and the life desired is 30000 hrs. The running conditions are steady, no shock loading. Select a suitable bearing.	7M	CO2	L5
	b)	A single row deep groove ball bearing No.6002 is subjected to an axial thrust of 1000 N and a radial load of 2200 N. Determine the expected life that 50 % of the bearings will complete under this condition.	7M	CO2	L1
	2)	UNIT–III Explain about the stress due to whipping action on connecting rod ends.	4M	000	L2
•	a) b)	Estimate the design of a Cast Iron piston for a single acting four stroke engine	-11/1	CO3	LZ
	2)	for the following data :			
		Cylinder bore = 100 mm, stroke = 125 mm, Maximum gas pressure= $5N/mm^2$, Indicated Mean effective pressure= $0.75N/mm^2$, Mechanical efficiency= 80% , Fuel consumption = 0.15 kg per brake power per hour, Higher calorific value of			
		fuel =42X10 ³ kj/kg, speed=2000 rpm. Any other data required for the design may	4014		
		be assumed. OR	10M	CO3	L5
		Describe the design procedure of a Connecting rod with a neat sketch.	14M	CO3	L1
•			1 7 1 9 1	003	L I

Page **1** of **2**

7		UNIT-IV			
7.		Estimate the design of a helical spring for a spring loaded safety valve for the following conditions:			
		Diameter of valve seat = 65 mm			
		Operating pressure = 0.7 N/mm^2			
		Max. pressure when the valve blows off freely = 0.75 N/mm^2			
		Max. lift of the valve when the pressure rises from 0.7 to 0.75 N/mm ² =3.5 mm			
		Max. allowable stress = 550 MPa			
		Modulus of rigidity = 84 kN/mm^2			
		Spring index = 6	14M	CO4	L6
		OR			
8.	a)	Explain the selection criterion for the belt drives.	4M	CO4	L2
0.	,	•	-+171	004	LZ
	b)	A V-belt is driven on a flat pulley and a V-pulley. The drive transmits 20 kW from a 250 mm diameter V-pulley operating at 1800 rpm to a 900 mm diameter flat			
		pulley. The centre distance is 1m,the angle of groove is 40° and $\mu = 0.2$, if density			
		of belting is 1110 kg/m ³ and allowable stress is 2.1 MPa for belt material,			
		determine the number of belts required if C-size V-belts having 230mm ² cross-			
		section area are used.	10M	CO4	L5
		UNIT-V			
9.		A gear drive is required to transmit a maximum power of 22.5 kW. The velocity			
		ratio is 1:2 and rpm of this pinion is 200. The approximate centre distance			
		between the shafts may be taken as 600 mm. The teeth has 20 ^o stub involute			
		profiles. The static stress for the gear material (which is Cast Iron) may be taken			
		as 60 MPa and face width is 10 times the module. Determine the module, face width and no. of teeth on each gear. Check the design for dynamic and wear			
		loads. The deformation or dynamic factor in the Buckingham equation may be			
		taken as 80 and the material combination factor for the wear as 1.4.	14M	CO5	L5
		OR		000	
10.		A helical cast steel gear with 30 [°] helix angle has to transmit 35 kW at 1500rpm.			
10.		If the gear has 24 teeth, determine the necessary module, pitch diameter and			
		face width for 20 ^o full depth involute teeth. The static stress for Cast steel may			
		be taken as 56 MPa. The width of face may be taken as 3 times the normal pitch.			
		Determine the end thrust on the gear?	14M	CO5	L5

END

C		Ficket Number : R-15 R-15	
	.000	III B.Tech. II Semester Supplementary Examinations January 2022	
		Industrial Management	
		(Mechanical Engineering)	
	-	. Marks: 70 Time: 3 Hour	S
A	nsw	er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	
		UNIT–I	
1.	a)	Explain the functions of management	7N
	b)	Explain Maslow's need Hierarchy theory.	7M
		OR	
2.		Discuss in detail, the basic concepts related to an organization.	14M
2		UNIT-II	
3.		Explain the factors of selecting a plant location with specific reference to rural and urban sites.	14M
		OR	
4.		Compare and contrast CPM and PERT and explain their importance in project	
		management.	14M
		UNIT–III	
5.	a)	Define Method study. Explain about the steps in Method study.	7M
	b)	Distinguish between micro-motion and memo-motion studies.	7M
		OR	
6.	a)	List and explain about various types of allowances.	4M
	b)	The time study showed the average time for a quality control test for an item is 12.55 min. The performance rating is 100, and allowances are 60 minutes per 8 hour shift.	
		(i) Calculate the labour standard for the operation.	
		(ii) If this quality control test is alone repeatedly, how many tests per 8 hour shift could be completed on the average?	
		(iii) If the quality control test technician's labour rate is Rs. 10 per hour, what is	4014
		the standard labour cost per test?	10M
7.		UNIT-IV Explain in detail, the objectives and functions of Inventory Management.	14M
		OR	
		Define and explain in detail, the concept of TQM.	14M
8.		UNIT-V	
8.			
8. 9.		Define Job Evaluation. Explain about the methods of Job Evaluation. OR	14M
		Define Job Evaluation. Explain about the methods of Job Evaluation.	14M 14M

	all Ticket Number :	
	all Ticket Number : R-1	5
Co		<u> </u>
	III B.Tech. II Semester Supplementary Examinations January 2022	
	Metrology and Surface Engineering (Mechanical Engineering)	
Mc	ax. Marks: 70 Time: 3 H	ours
Ans	wer all five units by choosing one question from each unit (5 x 14 = 70 Mar	ks)
	********* UNIT–I	
1.	Distinguish between hole basis system and shaft basis system? A hole and the	
1.	mating shaft have nominal size of 50mm. The assembly is to have a maximum	
	clearance of 0.15mm and minimum clearance of 0.05mm. The hole tolerance is 1.5	
	times the shaft tolerance. Determine the size of hole and shaft is (a) The hole based	4 4 1
	system, (b) The shaft based system. OR	141
2.	Explain Taylor's Principle of Gauge Design with suitable example?	14
		1-11
3. a)		
,	i. Spirit level	
	ii. Sine bar.	8
b)		~
	45 ⁰ ? OR	61
4.	How we are measuring angles using universal bevel vernier protractor With a neat	
	sketch.	14
	UNIT–III	
5.	What do you mean by waviness and roughness? Describe the methods for numerical	
	assessment of surface texture.	41
	OR	
δ.	Explain working, construction of any one mechanical comparator and what are it's	
	limitations?	41
7		
7.	Define best wire size. Explain the measurement of effective diameter of screw thread using three wire method.	14N
	OR	
3.	Explain the measurement of gear tooth thickness using gear tooth vernier caliper.	
	and how do you determine the pitch error of a spur gear	14N
	UNIT-V	
Э.	Explain the following alignment tests on Lathe	
Э.	Explain the following alignment tests on Lathe i. True running of head stock centre	141
Э.	Explain the following alignment tests on Lathe	141
9.).	Explain the following alignment tests on Lathe i. True running of head stock centre ii. True running of locating cylinder of main spindle	14N 14N

		All Ticket Number :	R-	15	
	Coc	Le: 5G561 III B.Tech. II Semester Supplementary Examinations January	/ 2022	2	
		Instrumentation and Control Systems (Mechanical Engineering)			
	-	ax. Marks: 70 wer any five full questions by choosing one question from each unit (5x1 ********	ime: (4 = 70		-
		UNIT–I	Marks	СО	Blooms Level
1.	a)	Describe the terms linearity, repeatability and calibration.	7M	CO1	BL
	b)	List the different sources of errors in measurements and measuring instruments? Explain them brief.	7M	CO1	BL
		OR			
2.	a)	Draw the generalized scheme of a typical measurement system and explain about various components of it.	7M	CO1	BL
	b)	Explain about LVDT with a neat sketch.	7M	CO2	BL
3.	a)	Describe the working principle of Mcleod pressure gauge with neat sketch.	7M	CO3	BL
	b)	Compare and contrast the advantages and limitations of resistance thermometers and thermistors.	7M	CO3	BL
1	2)	OR Explain the working principle of ultrasonic flow motor	7M	CO3	BL
4.	a) b)	Explain the working principle of ultrasonic flow meter. Why rotameter is called variable area flow meter? Describe its construction	7 111	003	BL
	0)	and working with a neat sketch.	7M	CO3	
5.	a)	What do you understand by a strain rosette? How is it used?	7M	CO4	BL
	b)	Explain construction and working of hydraulic load cell.	7M		BL
		OR			
6.	a)	Describe the tension measurement using strain gauge with neat sketch.	7M	CO4	BL
	b)	Explain the construction, principle of working and advantages of Strain gauge accelerometer.	7M	CO4	BL
7	c)	UNIT-IV	714	005	BL1&BL
7.	a) b)	Define gauge factor. Explain the factors which affect the gauge factor. What are the load cells? Explain the working principle of strain gauge load cell	7M	CO5	BLIABL
	0)	with a neat diagram.	7M	CO5	
~	-)	OR	714	0.05	וס
8.	a) b)	Distinguish between bonded and unbounded strain gauges	7M 7M	CO5 CO5	BL BL
	b)	Explain the method of calibration of strain gauges.	7M	005	DL
9.	a)	Draw a block diagram of a typical closed loop system and explain its features.	7M	CO6	BL2
	b)	Define transfer function? List the steps to determine transfer function. OR	7M	CO6	BL1
0.	a)	h loop transfer function of a unity feedback control system is given by The oper 20 $G(s) = \overline{s(s+2)}^{i}$			
		Find the state error to the input function $r(t) = 1 + t + t^2$	7M	CO6	BL1
	b)	Represent the mathematical models for thermal systems with an example.	7M	CO6	BL3

	н	all Ticket Number :			
			R-15	5]
	Co	Dde: 5G564 III B.Tech. II Semester Supplementary Examinations January 2	2022		1
		Applied Thermodynamics-III			
		(Mechanical Engineering)			
		Tim nswer any five full questions by choosing one question from each unit (5x14 ********	ne: 3 F = 70 <i>N</i>		
			Marks	со	Blooms Level
		UNIT–I			
1.	a)	Sketch the Brayton cycle on p-V and T-s plots and derive a			
		relation for its thermal efficiency in terms of pressure ratio.	8M	CO1	L2
	b)	Discuss the effect of reheating, regeneration and intercooling on the performance of a gas turbine cycle.	6M	CO1	
		OR	OIVI	COT	L2
2.		Differentiate turbojet and turbojet engines with suitable			
		diagrams.	14M	CO1	L2
		UNIT–II			
3.	a)	Explain with neat sketch a Boot-strap cycle of air refrigeration			
	հ)	system.	10M		L2
	b)	List the merits and demerits of an air refrigeration system. OR	4M	CO1	L2
4.		Ammonia refrigeration system operates in a simple saturation			
4.		vapour compression cycle to produce ice. The average			
		temperature of condenser and evaporator are at 35°C and -			
		10°C respectively. The plant produces 12 tons of ice everyday			
		using available water at 30°C. The ice produced is at -5°C. Determine the following			
		i) Cooling capacity of the plant in kW			
		ii) Mass flow rate of refrigerant			
		iii) Temperature of ammonia vapour at the discharge of the			
		compressor			
		iv)The compressor cylinder diameter and stroke, if its volumetric efficiency is 70% speed = 1500 rpm and L/D = 1.15.			
		v) Theoretical power requirement of the compressor			
		vi)Theoretical COP	14M	CO1	L3
		UNIT-III			
5.	a)	Explain the working of a simple ammonia-water absorption	4014	• -	
	b)	refrigeration system with the help of a neat sketch. Enumerate the required properties of an ideal refrigerant.	10M		L2
	0)	OR	4IVI	CO2	L2

6.	a)	Draw a neat diagram of Electrolux refrigerator and explain its working principle.	8M	CO2	L2
	h)	List the advantages of vapour absorption refrigeration system		002	
	0)	over vapour compression refrigeration system.	еM	CO2	
			OIVI	02	L2
7.		The sling psychrometer in a laboratory test recorded the			
		following readings :			
		Dry bulb temperature = 35° C, Wet bulb temperature = 25° C.			
		Calculate the following :			
		(i) Specific humidity			
		(ii) Relative humidity			
		(iii)Vapour density in air			
		(iv) Dew point temperature			
		(v) Enthalpy of mixture per kg of dry air.			
		Take atmospheric pressure = 1.0132 bar.	14M	CO3	L3
		OR			
8.		It is required to design an air-conditioning system for an			
0.		industrial process for the following hot and wet summer conditions :			
		Outdoor conditions 32°C DBT and 65% R.H.			
		Required air inlet conditions 25°C DBT and 60% R.H.			
		Amount of free air circulated 250 m ³ /min.			
		Coil dew temperature 13°C.			
		The required condition is achieved by first cooling and			
		dehumidifying and then by heating. Calculate the following :(i) The cooling capacity of the cooling coil and its by-pass factor.			
		(ii) Heating capacity of the heating coil in kW and surface			
		temperature of the heating coil if the by-pass factor is 0.3.			
		(iii) The mass of water vapour removed per hour.	14M	CO3	L3
		UNIT–V			
9.		Explain the summer Air conditioning system and the winter air			
		conditioning system with neat sketches.	14M	CO4	L2
		OR			
10.		Enumerate various methods of air conditioning duct design			
		and explain in detail.	14M	CO4	L2
		END			

	H	all Ticket Number :	
	Со	de: 5G562	
		III B.Tech. II Semester Supplementary Examinations January 2022	
		CAD/CAM	
		(Mechanical Engineering) ax. Marks: 70 Time: 3 Hours	
		swer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT-I	
	a)	Describe the product cycle followed in a CAD/CAM system	71
	b)	What are the designs related tasks performed by modern computer? Explain with block diagram	71
		OR	
2.	a)	What database structure is implemented for a graphics modeling?	71
	b)	What is a geometric transformation? Explain any three geometric 2-D transformations	71
		UNIT-II	
3.		The coordinates of a triangle are P(50, 20), Q(110, 20) and R(80, 60). Determine the coordinates of the vertices for the new reflected triangle, if it is to be reflected about $(i) = V$	
		 (i) X – axis (ii) Line y = x 	141
		OR	1-11
ŀ.	a)	What is the need for concatenation of transformations? Explain what care should be taken in	
•	α,	such cases.	8
	b)	Describe briefly the following methods of surface modeling with a few application examples: i. Revsurf ii. Tabcyl iii. Bicubic surface	
		iv. Bezier surface	6
		UNIT–III	
5.	a)	What do you understand by the term Numerical Control? Explain briefly the functions that are expected to be served by NC in machine tools.	71
	b)	Discuss the advantages and limitations of open loop and closed loop controls.	
	D)	OR	71
5 .	a)	Explain the APT statements:	
	,	i) GOTO and GO/TO ii) GODLTA and GOBACK and iii) INTOL and OUTTOL.	71
	b)	With a neat sketch explain the Structure of CNC machine tools	71
		UNIT–IV	
′ .	a)	Discuss the importance of materials handling system in FMS.	71
	b)	Discuss the principle of variant process planning.	71
		OR	
	a)	Discuss how group technology is used in designing manufacturing cells.	7
8.	h)	Sketch the layout of a typical FMS and explain the important subsystems.	71
8.	b)		
5.	D)	UNIT-V	
	a)	Discuss the important benefits of computer-aided quality control.	7
	,		
).	a)	Discuss the important benefits of computer-aided quality control. Describe the features of a flexible inspection system. OR	
3.).	a)	Discuss the important benefits of computer-aided quality control. Describe the features of a flexible inspection system.	71 71 71