(ეიძ	e: 5G564	<u> </u>		<u>I</u>	1	<u> </u>	1	1	1	1	<u> </u>			R-15	5	
,	-0a	III B.Tech. II Ser	neste	er S	upp	lem	ent	arv	Fxar	nina	nitr	ns I	ulv/A		t 2021		
					• •			•	yna				01,77	logos			
			,						gine								
	Ма	x. Marks: 70		1					9.1.10		91			Tir	ne:3 H	lours	
	Ansv	wer any five full qu	estion	ns b'	y ch	oosir	-			on fr	om e	each	n unit	(5x14	= 70 M	arks)	
							****	****									
															Marks	CO	Bloor Leve
						UN	IT–I										
1.	a)	Describe with near	it sket	ch,	the	work	ing o	of a	simp	le co	onsta	nt p	ressu	re gas			
		turbine.													10M	CO1	I
	b)	State the difference	e in wo	orkir	ng of	an o	pen a	and c	losec	l cyc	le ga	s tur	bine.		4M	CO1	I
						(OR										l
2.		Explain the working	g of a	turb	o jet	prop	ulsio	n sys	stem	with	the h	elp d	of sch	ematic			
		arrangement of its	•		•	• •		•				•			14M	CO1	L
		-				UN	T–II			-				-			
3.		Describe the worki	ng of t	the s	simp	le air	cool	ing c	ycle	with	the h	elp o	of sch	ematic			
		and T-s diagrams.	U		•			U				•			14M	CO1	L
						(OR										L
ŀ.		Explain the funct	ions (of \	/ario	us c	omp	onen	ts of	а	vapo	our d	compr	ession			
••		refrigeration syster					•				•		•		14M	CO1	l
		5 ,		•								0					
5.	a)	Describe with neat	sketch	h the	e Li-E			ter sv	/stem).					8M	CO2	l
	b)	Discuss the desiral													6M	CO2	L
	0)			por			OR	lonig	oran						0 M	002	L
-	a)	Drow the echement	ia dia a						- h								L
5.	a)	Draw the schemat and explain its perf	-	-	1012	actua	ii vap	oura	absor	ριοι	rien	igera		system	10M	000	
	۲						مصطم		(CO2	L
	b)	Differentiate betwe	en pri	mar	y and			iy ie	inger	ants.					4M	CO2	L
7.		It is required to d	ocian	<u></u>			T–IV		nt fo	ro	amall	offi	co ro	om for			
		following winter co	•		an-c	onun		y pia		a	Sman						
		Outdoor conditions		13.		1	<u>مەر</u> 1	TBC	and 1	100C	WRT	-					
		Required condition							and 6								
		Amount of air circu			:				n./pe								
		Seating capacity of			:		0.	1 /1111	n./pe	15011	•						
		The required con			Nobio			by b	ootin	a	nd th	on k	av ad	iabatia			
		humidifying. Deterr					mst	бу п	eatin	y ai	ia in	ien i	Jy au	labatic			
		(i) Heating capacit				-	and	tha a	surfac	no to	mnar	atur	o roai	uired if			
		the by pass fact	-				anu		Suna		mper	atur	e ieqi				
		(ii) The capacity of													14M	CO3	L
					incr.		OR								1 1101	005	L
		4 los of o'r of 040 k		11													
3.		1 kg of air at 313 K	•		•									-			
		at 293 K dry bulb t condition of air.	emper	atui	re an	a 29	3 K U	ew p	oint t	emp	eratu	re. F	-ind tr	ie inai	14M	000	
		condition of all.					T–V								14101	CO3	L
).	2)	Describe the different	ont tun					cooli	na da	wico	~				7M	004	
9.	a)		•••			•			•							CO4	L
	b)	Describe an air-wa	ter hea	at p	ump			d its a	аррис	atior	IS.				7M	CO4	L
							OR										L
).	a)	Illustrate the operation		of ar	ny or	ne ty	pe of	f deh	umid	ifier	used	l dur	ing di	fferent			
		seasons of the yea	ır.												7M	CO4	L
	b)	Write a short note	on air-	was	her t	ype ł	numio	difier	with	diag	ram.				7M	CO4	L
						3	***EI	ND**	*								

	На	Il Ticket Number :	
l		R-1	5
, c	-0a	e: 5G562 III B.Tech. II Semester Supplementary Examinations July/Aug 2021 CAD/CAM	
		(Mechanical Engineering)	
		x. Marks: 70 Time: 3 Answer all five units by choosing one question from each unit (5 x 14 = 70 Mark	
1.	a)	Outline the working of a Raster scan graphics coordinate system	7M
	b)	Emphasize the need for concatenation of transformations?	7M
•	`	OR	
2.	a)	Differentiate between product cycle in conventional and computerized manufacturing systems with the help of neat diagrams.	8M
	b)	Illustrate various display devices used in CAD/CAM applications?	6M
	0)		OW
3.	a)	Define a geometric model? Describe how a 3-D object is represented by a wire	
		frame model.	7M
	b)	Distinguish between 2-D and 3-D wireframe models.	7M
	、	OR	714
4.	a)	Summarize various curve representation methods used for geometric modeling.	7M
	b)	State the classification of various surfaces that can be used in geometric modeling applications and explain b-spline surfaces	7M
			7 101
5.	a)	Generalize the advantages of using CNC as compared to NC.	7M
	b)	Interpret various Numerical Control elements with neat block diagram?	7M
		OR	
6.		Write an APT program to cut the profile shown in figure1. Make suitable assumptions.	
		P6 P5 P4 P3 R20 60 60 60 60 72	
		Figure 1 UNIT-IV	14M
7.	a)	Define FMS? Discuss various components of FMS in detail.	7M
	b)	Enumerate the applications of FMS.	7M
8.	a)	OR Briefly summarize the Optiz coding system generally used in group technology?	7M
0.	b)	List out the benefits of Group Technology (GT) and explain the role of GT in industry.	7M
9.	a)	Describe the importance of quality control in CIM and emphasize the outcome of quality control methods.	7M
	b)	Illustrate the differences between conventional Quality Control and computer aided	714
		quality control.	7M
10.	a)	Describe at least one type of non-contact inspection methods	7M
	b)	Contrast in detail between MRP-I and MRP-II in context to computer integrated	
		production planning.	7M

Hall HCKel Number.						R-15
Hall Ticket Number :						

Code: 5G565

Max. Marks: 70

III B.Tech. II Semester Supplementary Examinations July/August 2021

Design of Machine Elements-II

(Mechanical Engineering)

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	со	Blooms Level
		UNIT–I			
1.	a)	What are the advantages and disadvantages of hydrostatic bearings over hydrodynamic bearings.	4M	CO1	L1
	b)	The following data is given for a 360° hydrodynamic bearing: Journal diameter =100 mm, bearing length =100 mm, radial load = 50 kN, journal speed = 1440rpm, radial clearance =0.12 mm, viscosity of lubricant =16 Cp. Determine (i) Minimum film thickness (ii) Coefficient of friction and (iii) Power lost in friction.	10M	C01	L5
		OR		001	
2.		Estimate the design of a Journal bearing for a centrifugal pump from the following data : Load on the journal = 20000 N, speed of the journal=900rpm, type of oil is SAE 10, for which the absolute viscosity at $55^{\circ}C = 0.017$ kg/m-s, ambient temperature of oil = $15.5^{\circ}C$,Maximum bearing pressure for the pump=1.5 N/mm ² .Calculate also the mass of the lubricating oil required for artificial cooling, if rise of temperature of oil be limited to $10^{\circ}C$.Heat dissipation			
		coefficient = $1232 \text{ W/m}^{2/0}\text{C}$.	14M	CO1	L6
		UNIT–II			
3.	a)	Explain briefly about Static and Dynamic load rating of rolling contact bearings.	4M	CO2	L2
	b)	A system involves four identical ball bearings, each subjected to a radial load of 2500 N. The reliability of the system i.e., one out of four bearings failing during the lifetime of five million revolutions, is 82 %.Determine the dynamic load carrying of the bearing, so as to select it from the manufacturer's catalogue based on 90% reliability.	10M	CO2	L5
		OR			
4.	a)	What are rolling contact bearings? Discuss their advantages over sliding contact bearings.	4M	CO2	L1
	b)	Select a single row deep groove ball bearing for a radial load of 4000 N and an axial load of 5000 N,operating at a speed of 1600 rpm for an average life of 5 years at 10 hours per day.Assume uniform and steady load.	10M	CO2	L5
5.		Estimate the design of a Connecting rod for a petrol engine from the following data : Diameter of the piston = 120 mm, Weight of the reciprocating parts=2.0kg, Length of the connecting rod=300 mm, stroke length=140mm, speed=2000rpm, Maximum explosion pressure=2.25N/mm ² .	14M	CO3	L6
		OR			
6.		Describe the design procedure for the Piston of an I.C.Engine.	14M	CO3	L2
0.		become the design procedure for the histori of an i.e. Engine.	1-1111	003	LL

Code: 5G565

		UNIT–IV			
7.	a)	Explain the construction of Multileaf Springs.	4M	CO4	L2
	b)	A railway wagon of mass 20 tonnes is moving with a velocity of 2 m/s. It is brought to rest by two buffers with springs of 300 mm diameter. The maximum deflection of springs is 250 mm. The allowable shear stress in the spring			
		material is 600 MPa. Estimate the design of the springs for the buffers.	10M	CO4	L6
		OR			
8.	a)	What are the advantages of Flat belt drives?	4M	CO4	L1
	b)	A flat belt is required to transmit 30 kW from a pulley of 1.5 m effective diameter running at 300 rpm. The angle of contact is spread over 11/24 of the circumference. The coefficient of friction between the belt and pulley surface is 0.3.Determine taking centrifugal tension into account, width of the belt required. It is given that the belt thickness is 9.5 mm, density of its material is			
		1100 kg/m ³ and the related permissible working stress is 2.5MPa.	10M	CO4	L5
9.	a)	What are the applications and advantages of Spur gears?	4M	CO5	L1
	b)	The pitch circle diameters of the pinion and gear are 100 mm and 300 mm respectively. The pinion is made of plain carbon steel 40C8 ($S_u = 600 \text{ N/mm}^2$) while the gear is made of grey Cast Iron FG 300 ($S_{ut} = 300 \text{ N/mm}^2$). The pinion receives 5 kW power at 500 rpm through its shaft. The service factor and the factor of safety can be taken as 1.5 each. The face width of the gear can be taken as 10 times that of the module. Assume that the velocity factor accounts for the dynamic load. Determine (i) module and (ii) the number of teeth on the			
		pinion and the gear.	10M	CO5	L5
		OR			
10.	a)	What are the advantages of Helical gears?	7M	CO5	L1
	b)	Briefly discuss about the gear tooth failure and their remedies ***END***	7M	CO5	L5

Hal	I Ticket Number :	
Co	de: 5G566	
	III B.Tech. II Semester Supplementary Examinations July/Aug 2021 Industrial Management (Mechanical Engineering)	
-	Time: 3 Hou wer all five units by choosing one question from each unit (5 x 14 = 70 Marks *********	
1.	UNIT–I Define Management and explain in detail, the evolution of management thought. OR	14M
2.	Discuss in detail, the basic concepts related to an organization.	14M
3.	UNIT-II Explain the factors of selecting a plant location with specific reference to rural and urban sites. OR	14M
4.	Compare and contrast CPM and PERT and explain their importance in project management.	14M
5.	UNIT–III Explain in detail, the concept, steps involved and the tools used for Method Study. OR	14M
6.	Define Work Sampling and explain in detail, the steps involved in work sampling.	14M
7.	UNIT-IV Explain in detail, the objectives and functions of Inventory Management. OR	14M
8.	Define and explain in detail, the concept of TQM.	14M
9.	UNIT-V Define Job Evaluation and explain in detail the different types of evaluation methods. OR	14M
10.	Explain in detail, with the help of an example, the concept of Product Life Cycle.	14M

C	ode: 5G561	R-1	5	
-	III B.Tech. II Semester Supplementary Examinations July/Aug	y 2021		
	Instrumentation and Control Systems	-		
	(Mechanical Engineering)			
		ime: 3		
A	nswer any five full questions by choosing one question from each unit (5x1	4 = 70	Marks)
				Bloc
		Marks	CO	Lev
	UNIT–I			
. a	Explain the basic principles of measurement.	7M	CO1	I
b	Explain the use of piezo electric transducers for displacement measurement.	7M	CO2	I
	OR			
. a	Explain the following terms: i) Range and span ii) Resolution iii) Calibration			
	iv) Sensitivity.	8M	CO1	I
b	Explain the working principle of variable-inductance transducer with a neat			
	sketch and also list out its advantages.	6M	CO2	I
	UNIT–II			
5. a)	Describe the arrangement of thermocouples for the measurement of average			
	temperature of a room.	8M	CO3	l
b	Describe the radiation pyrometer with a neat sketch	6M	CO3	I
	OR			
. a	Explain the working of magnetic flow meter with neat sketch.	7M	CO3	
b				
	gauge and a diaphragm gauge for pressure measurement.	7M	CO3	I
. a		7M	CO4	I
b	-			
	shaft torque using strain gauge torsion meter?	7M	CO4	I
	OR			
. a				
. u	measurement.	7M	CO4	
b		7M	CO4	
N.		7 101	004	
. а		7M	CO5	I
. u		7 101	005	
D.	strain gauge.	7M	CO5	I
	OR		000	I
. a	Explain how strain gauges can be used for the measurement of bending stresses?	7M	CO5	I
ہ				
b		7M	CO5	
). a	UNIT-V What is a servomechanism? Describe the feature of servomechanism.	8M	000	
			CO6	I
b		6M	CO6	
	OR			
). a				
	diagrams.	6M	CO6	
b				
	system with the following transfer function, subjected to unit step.			
	$G(s) = \overline{s_{2}} + \frac{\omega_{i_1}^2}{2\xi\omega_n s + \omega_{i_2}^2}$			
	EMID	8M	CO6	I
	END			

	Ticket Number : R-1	5
Code	: 5G563	
	III B.Tech. II Semester Supplementary Examinations July/Aug 2021 Metrology and Surface Engineering	
	(Mechanical Engineering)	
Max	Marks: 70 Time: 3	Hour
A	nswer all five units by choosing one question from each unit (5 x 14 = 70 Mark	(s)
	UNIT-I	
1. a)	Explain Taylor's Principle of Gauge Design with suitable example?	14M
uj	OR	
2. a)	Find the shaft and hole dimensions with tolerance for a 90H8e9 pair given the	
a)	following data:	
	90 mm lies in the diameter step of 80 to 100mm	
	Upper deviation for e shaft = $-11 D 0.41$	
	(IT8 = 25i ; IT9= 40i)	14M
	UNIT–II	
3.	Describe the working principle of NPL Flatness interferometer with a sketch.	14M
4.	The angle of wedge shaped block is being checked with 100mm Sine bar With slip gauges of 26.867mm height at one end of Sine bar, the dial gauge readings at	
	each end of the work piece vary by 0.06mm, the gauge block end being low. If the	
	work piece is 30mm long what should be the next height of the gauge block tried?	
	Also calculate the angle of the work piece?	14M
	UNIT–III	
5.	What is a comparator? Explain the working principle in mechanical –optical comparator	14M
δ.	In the measurements of surface roughness the heights of 10 successive peaks and	
J.	valleys over a datum line over a specified sampling length were found to be in	
	micrometer Peaks: 45, 42, 40, 35, 35 Valleys: 30, 25, 25, 24, 18	
	Find CLA and RMS?	14M
	UNIT–IV	
7. a)	What is best wire size for effective diameter measurement	7M
b)	Explain about the pitch errors in screw thread	7M
3.	Discuss constant Chord method for Gear tooth thickness measurement.	14M
	UNIT-V	
Э.	Name the different alignment tests to be performed on a drilling machine.	14M
). a)	Explain various mechanical cleaning processes	7M
b)	Explain briefly about diffusion coatings	7M
		1 1 1 1