	Н	all Ticket Number :			
			R-1 3	7	
	Co	de: 7G16D III B.Tech. II Semester Supplementary Examinations Februar	v 2021		
		Object Oriented Programming Concepts	y 2021		
		(Common to EEE & ECE)			
	M	ax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = ********	Time: 3 70 Marks		
			Marks	со	Blooms Level
		UNIT-I			Lovei
1.	a)	Define object oriented programming and what is the need of object oriente			
		programming paradigm?	7M	CO1	L3
	b)	Compare object oriented programming with procedure oriented programming. OR	7M	CO1	L1
2.	a)	Write the differences between pointers and arrays.	7M	CO1	L2
	b)	Define constructor and write a C++ program to implement constructor.	7M	CO1	L3
	,				
-		UNIT–II			
3.	a)	Define overloading and explain about operator overloading with an example.	7M	CO2	L2
	b)	What is meant by inheritance? Explain about multiple inheritance with a example.	n 7M	CO2	L3
		OR	7 1 1 1	002	LU
4.	a)	What is polymorphism explain with an example in C++.	7M	CO2	L2
	b)	Explain about various manipulators of C++ language.	7M	CO2	L1
5	a)	UNIT–III Explain briefly about various features of java.	7M	CO3	L1
5.	,	Write a java program to generate the Fibonacci series.		CO3	L3
	0)	OR	7.101	005	LU
6.	a)	Write a java program for sorting of numbers.	7M	CO3	L3
	b)	Explain about various string handling functions of java.	7M	CO3	L1
7.	a)	UNIT-IV Define package? How is creating and accessing in java.	7M	CO4	L2
7.	a) b)	Differentiate between interface and abstract class.	7M	CO4	L2 L1
	0)	OR	7 1 1 1	004	L 1
8.	a)	What are the different types of exceptions and explain with program.	7M	CO4	L2
	b)	Write a java program to implement the built-in exception.	7M	CO4	L3
۵	a)	UNIT-V What is multithreading? What are the priorities given for multithreading.	7M	CO4	L2
э.	a) b)	Explain about life cycle of a thread with its neat diagram.	7M	CO4	L2 L2
	5)	OR	7 111	004	LZ
10.	a)	What is an applet? Explain how applet will communicate with each other.	7M	CO4	L3
	b)	Explain role of applet in designing a web page.	7M	CO4	L3

н	all Ticket Number :		17	
Cod	de: 7G261	R -1	17	
	III B.Tech. II Semester Supplementary Examinations Februar	y 2021		
	Power System Operation and Control			
	(Electrical and Electronics Engineering)			
Mo	ax. Marks: 70 T	ime: 3	Hou	rs
	Answer all five units by choosing one question from each unit (5 x 14 = 7 ********	70 Mar	ks)	
		Marks	СО	Bloom Leve
	UNIT–I			
a)	Explain the step by step procedure for computing economic allocation of			
	generation in a thermal station.	6M	CO1	
b)	In a thermal power station, incremental cost are given by the following			
	equations:			
	$dC_1/dP_1 = Rs.(0.15P_1+12);$			
	$dC_3/dP_3 = Rs.(0.21P_3+13);$			
	$dC_2/dP_2 = Rs.(0.05P_2+14);$			
	Where P_1 , P_2 and P_3 are the loads in MW. Evaluate the economical load allocation	014		,
	between the three units, when the total load on the station is 300MW.	81/1	CO1	١
	OR			
a)	Give various advantages of general loss formula and state the assumptions			
	made for calculating B _{mn} coefficients.	ΛM	CO1	
b)	The incremental fuel cost for two plants are			
	$dC_1/dP_1 = 0.075P_1 + 18 \text{ Rs./MWh}$			
	$dC_2/dP_2 = 0.08P_2 + 16 \text{ Rs./MWh}$			
	The loss coefficients are given as $B_{11}=0.0015/MW$, $B_{12}=-0.0004/MW$ and $B_{12}=-0.0004/MW$ for a 25 Ba (MM/h). Solve for the real neuron concerning total			
	B_{22} =0.0032/MW for =25 Rs./MWh. Solve for the real power generations, total load demand and the transmission power loss.	71/	CO1	П
	· · · · · · · · · · · · · · · · · · ·	7 101	COT	
2)	UNIT-II Explain clearly the mathematical formulation of optimal scheduling of			
a)	hydrothermal system with a typical example.	7M	CO2	I
b)	In a two plant operation system, the hydro plant is operated for 10 hrs, during		002	
0)	each day and the steam plant is to operate all over the day. The characteristics			
	of the steam and hydro plants are:			
	CT=0.04PGT ² +30PGT+10 Rs.hr			
	WH=0.12 PGH ² +30PGH m ³ /sec			
	When both plants are running, the power owned from steam plant to load is			
	150 MW and the total quantity of water is used for the hydro plant operation			
	during 10 hrs is $150 \times 10^6 \text{ m}^3$. Determine the generation of hydro plant and cost			
	of water used. Neglect the transmission losses.	7M	CO2	V
	OR			
a)	Write short notes on unit commitment problem, load scheduling, and economic			
	dispatch with a real time example.	7M	CO2	I
L->	Using dynamic programming method, how do you find the most economical			
b)	combination of the units to meet a particular load demand?	7M		II

			Code	e: 7G26	1
5.	a)	UNIT–III Explain the mathematical modeling of speed governing system.	7M	CO3	II
	b)	Two turbo alternators rated for 110 MW and 220 MW have governor droop characteristics of 5% from no load to full load. They are connected in parallel to share a load of 250 MW. Determine the load shared by each machine	71.4		N /
		assuming free governor action. OR	7M	CO3	IV
6.	a)	Explain about the transfer function and block diagram representation of IEEE			
0.	a)	Type-1 model of excitation system.	7M	CO3	II
	b)	Explain the block diagram representation of an isolated power system with diagram.	7M	CO3	111
		UNIT–IV			
7.	a)	Explain the necessity of keeping frequency constant in a power system network.	7M	CO4	II
	b)	With a neat sketch of block diagram of two area load frequency control system, explain the operation under steady state condition, without any controllers.	7M	CO4	III
		OR			
8.	a)	With a neat block diagram explain the load frequency control for a single area system.	6M	CO4	II
	b)	Two generators rated for 250 MW and 500 MW are operating in parallel. The droop characteristics are 4% and 6% respectively. Assuming that the generators are operating at 50 Hz at no load, how a load of 750 MW would be	014		
		shared. What is the system frequency? Assume free governor action.	81/1	CO4	111
9.	a)	Explain clearly what you mean by compensation of line and discuss briefly different methods of compensation.	7M	CO5	II
	b)	A 440V, 3-Ø distribution feeder has a load of 100 KW at lagging p.f. with the load current of 200A. If the p.f. is to be improved, determine the following:			
		i) Uncorrected p.f. and reactive load			
		ii) New corrected p.f. after installing a shunt capacitor of 75 KVAR.	7M	CO5	
		OR			
10.	a)	What is load compensation? Discuss its objectives in power system.	6M	CO5	II
	b)	The load at receiving end of a three-phase overhead line is 25.5 MW, power factor is 0.8 lagging, at a line voltage of 33 kV. A synchronous compensator is situated at receiving end and the voltage at both the ends of the line is maintained at 33 kV. Calculate the MVAR of the compensator. The line has a resistance of 4.5 ohms per phase and inductive reactance (line to neutral) of			
		20 ohms per phase.	8M	CO5	IV
		* * * * *			

Hall Ticket Number :						
		<u></u>				R-17

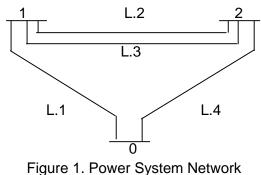
Code: 7G264

Max. Marks: 70

III B.Tech. II Semester Supplementary Examinations February 2021

Power System Analysis

(Electrical and Electronics Engineering)


Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

Marks CO Blooms Level

- 1. a) Discuss with an example the procedure to form Zloop using singular transformation 7M
 - b) Obtain the Y-Bus of the power system shown in below figure 1. Take reactance of each line as j0.3 p.u.

7M

OR

- a) Write algorithm for the modification of Zbus matrix for addition of an element. (type1 Modification)
 - b) What is a partial network? Explain with an example.

7M

UNIT–II

3. The load flow data for the sample power system are given below. The voltage magnitude at bus 2 is to be maintained at 1.04 p.u. The maximum and minimum reactive power limits of the generator at bus 2 are 0.35 and 0.0 p.u respectively. Determine the set of load flow equations at the end of first iteration by using Newton-Raphson method.

Impedance for system

Bus Code	Impedence	Line charging
1-2	0.08+j0.24	0.0
1-3	0.02+j0.06	0.0
2-3	0.06+j0.18	0.0

Schedule of generation and loads:

Rue codo	Voltogo	Gen	eration	Load			
Bus code	Voltage	MW	MVAR	MW	MVAR		
1	1.06+j0.0	0	0	0	0		
2	1.0	20	0	50	20		
3	1.0	0	0	60	25		

14M

OR

- 4. a) Write algorithm for Newton -Raphson method of load flow with polar coordinates 8M
 - b) Compare different load flow studies.

6M

Write notes on: (i) Per Unit System (ii) Short circuit capacity of Bus.	6M
Two generators rated at 10 MVA, 11 KV and 15 MVA, 11 KV respectively are connected in parallel to a bus. The bus bars feed two motors rated 7.5 MVA and 10 MVA respectively. The rated voltage of the motors is 9 KV. The reactance of each generator is 12 % and that of each motor is 15 % on their own ratings.	
Assume 30 MVA, 10 KV base and draw reactance diagram	8M
OR	
Explain the principle of symmetrical components. Derive the equations to convert phase quantities into symmetrical components and symmetrical components into phase quantities.	7M
A 3-phase 37.5 MVA, 33kV alternator having X_1 =0.18pu, X_2 = 0.12pu and X_0 =0.10pu based on its rating, is connected to a 33 kV overhead line having X_1 =6.3 ohms, X_2 = 6.3 ohms and X_0 = 12.6ohms per phase. A single line to ground fault occurs at the remote end of the line. The alternator neutral is solidly	
grounded. Calculate fault current.	7M
UNIT–IV	
What is meant by power system stability? How they are classified?	6M
A generator rated 75MVA is delivering 0.8 p.u power to a motor through a transmission line of reactance j0.2 p.u. The terminal voltage of the generator is 1.0p.u and that of the motor is also 1.0 p.u. Determine the generator emf behind	
transient reactance. Also find the maximum power that can be transferred.	8M
OR	
Derive power flow equations in terms of A, B, C, D constants.	6M
A 200KM, 3-phase, 50Hz transmission line has the data $A=D=0.928 \angle 1.2^{\circ}$, $B=131.2 \angle 72.3^{\circ}$ per phase. The sending end voltage is 230 kV. Determine the maximum power that can be transmitted at the receiving end voltage of	
220kVand the corresponding power required at the receiving end.	8M

UNIT-III

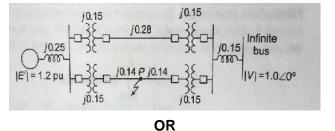
5.

6.

7.

8.

a) b)


a) b)

a)

b)

a) b)

- UNIT–V
- 9. a) Draw a diagram to illustrate the application of equal area criterion to study transient stability when there is a sudden increase in the input of generator.
 - b) Find the critical clearing angle for the system shown in fig. for a three-phase fault at the point P. The generator is delivering 1.0 pu power under prefault conditions.

8M

6M

- 10. a) Describe the methods of improving transient stability.
 6M
 - b) State and explain equal area criterion. How do you apply equal area criterion to find the maximum additional load
 8M

		Ticket Number : e: 7G263	1	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>			R-17		
	Ja	III B.Tech. II Se	eme	ster	Sup	ple	mer	ntary	/ Exc	amiı	natio	ons	Febru	ary 2	021		
				Sw	itch	Ge	ear d	and	Pro	tec	tion						
			(El€	ectri	cal	and	Elec	tron	ics E	ngir	neeri	ng)		- .	0.11		
N	-	x. Marks: 70 Answer all five uni	ite hv	cho	osin	a on		actio	n fro	m Q	nch i	init (5×1		e: 3 Ho	ours	
			IS Dy	CHC	USII ų	y on		*****		III CO		ן ווו נ	5 × 14	- 70 P	naiks j		
															Marks	со	Bloo Lev
							UN	IT–I									Lev
а	a)	Explain the follow	ing :				•										
		i) Symmetrical bre			-		-				-	-	-		7M	1	
b))	A circuit breaker i		•		•		•									
		at 220kV. The ma current. Determin	•														
		of the breaker wh					•			•	•••			• •			
		value. The stray c			-					-				•	7M	4	
							OR										
а	a)	What are the dif															
		medium is the cri					e vol	tage	for \	which	пар	artic	ular ra	nge of	7M	1	18
b)	circuit breaker is r Explain the operation					ne of	Vaco	num (Circu	uit Rra	aako	re		7M	1	118
U	,				ippiic			IT–II	Juni	Circu		Jane	13.		7 111	I	110
а	a)	Explain the operation	ation	of a	dire	ction	-		urrer	nt rel	ay w	/ith a	a neat	circuit			
	,	diagram.													7M	2	
b))	Explain in detail a	bout	the I	DMT	rela	ys cł	narac	teris	tics.					7M	2	
							OR										
а	,	Derive the Univers		•	•			•							7M	2	
b)	Compare Direction	nal re	elay a	and [Differ			ay.						7M	2	
							-	<u>T–III</u>									
	a)	Explain briefly abo				-		-	-						7M	3	
b))	A 3 – phase, 2 po a resistance of 3												•			
		which operates u											•				
		Determine % of w	•												7M	4	
				• •			OR										
а	a)	Explain the Buchh	noltz i	relay	ope	ratio	n witl	nan	eat s	ketc	h.				7M	3	
b)	Explain the percer	ntage	e diffe	erent	ial p	rotec	tion s	schei	me u	sed f	or tra	ansfori	ners.	7M	3	118
							UNI	T–IV									
а	a)	Explain the princip	ole of	ope	ratio	n of a	a Tra	nslay	y Rel	ay p	rotec	tion f	for fee	ders	7M	3	118
b))	Differentiate betwe			oles d	of a v	vave	trap	and	coup	ling	capa	citors i	n	7M	3	
		carrier current pro	tectio	on.			OR								7 111	5	
а		Evoluin the opera	tion	of o	oorri			nrof	ootio	n of	trop	mic	sion lir	o with			
a	a)	Explain the opera a neat schematic			Carrie		ment	pioi			lian	511153			7M	3	
b))	What do you unde	•		/ a zo	one d	of pro	tecti	on? [Discu	iss v	ariou	is type	s of		•	
	,	Zones of protection		,			•						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7M	3	1&
	、						-	T–V		. والم	اسم		، مادد (.h.		-	
a		Differentiate betw			•				•					n.	7M	3	
b))	What are various	meth	ods	comr	nonl	-	d foi	r neu	tral g	roun	ding	?		7M	3	
			.				OR										
а	a)	What is lightning	? Lis	st its	pro	perti	es. I	Jiscu	iss t	he r	netho	ods (of pro	tection	71.4	~	10
		against lightning.		dinan		tion :	to orb	ionto	acc -			onto	100		7M 7M	3 3	1&
))	What is reactance of	JIOUN	ung:	ivien	iuon I	15 ad'	vanta	ues a	11 (1 Cl	เรลกเข	101201				· · · · · · · · · · · · · · · · · · ·	

	Hal	I Ticket Number :			
		le: 7G265	R-	17	
		III B.Tech. II Semester Supplementary Examinations Februar Utilization of Electrical Energy (Electrical and Electronics Engineering)	y 202	1	
	Мс		Time: 3		rs
			/0///0/		Diserve
			Marks	CO	Blooms Level
1.	a)	UNIT–I Predict the modified speed torque characteristics of DC shunt motor.	7M	CO1	3
	b)	A 230V series motor used in lifts has combined armature and field resistance of 0.2 ohms. At a speed of 1800 rpm it draws a current of 50A. Determine the resistance to be added in series to the motor to limit the speed to 3600 rpm when the current is 12.5A. Assume that the			
		magnetization curve is straight line between 0 and 50A.	7M	CO1	3
2.	a)	OR Outline the methods to reduce the energy loss during starting.	7M	CO1	2
2.	b)	Classify the speed control methods of DC shunt motor. List their particular		001	-
	,	applications.	7M	CO1	3
		UNIT–II			
3.	a)	Explain the factors which limit the choice of frequency in induction heating?	7M	CO2	2
	b)	Explain the applications of different methods of electric heating. OR	7M	CO2	2
4.	a)	Describe various types of electric arc welding process.	7M	CO2	2
	b)	Illustrate various applications of electric welding. UNIT-III	7M	CO2	2
5.	a)	With the help of a neat sketch, explain the working principle of mercury			
		vapor lamp.	7M	CO3	2
	b)	Define following terms: Lumen, Candle power, MHCP, MSCP	7M	CO3	1
6.	a)	OR Write a short note on Polar Curves.	7M	CO3	2
0.	b)	Explain working principle of fluorescent lamps.	7M	CO3	2
		UNIT-IV			
7.	a)	Explain about mechanism of train movement.	7M	CO4	2
	b)	Explain the special features of traction motors. OR	7M	CO4	2
8.	a)	For a quadrilateral speed-time curve of an electric train, derive expression			
		for the distance between stops and speed at the end of the coasting period.	714	004	0
	b)	Drew and evaluin a typical anead time surve for an electric train and evaluin	7M 7M	CO4	2
•	b)	Draw and explain a typical speed time curve for an electric train and explain UNIT-V	7M	CO4	2
9.	a)	From history of electric vehicles explain interpret why in early 19 th century electric vehicles could not succeed over other vehicles.	7M	CO5	4
	b)	Explain the design and working of Hybrid vehicles.	7M	CO5	2
	U)	OR	7 111	005	2
10.	a)	Distinguish between hybrid and electric vehicles.	7M	CO5	2
	b)	Explain socio & environmental importance of electric vehicles.	7M	CO5	2
	,	*****			

		Hall Ticket Number :	R-17]
	C	Dide: 7G262 III B.Tech. II Semester Supplementary Examinations February Microprocessors and Microcontrollers	2021		_
		(Electrical and Electronics Engineering)			
		Ti Answer all five units by choosing one question from each unit (5 x 14 = 7 *********	me: 3 0 Mark		rs
			Marks	со	Bloom Level
		UNIT–I			2010
1.	a)	Describe about the signals involved in minimum mode operation of 8086	714		
	Ь)	microprocessor based system with the timing diagram.	7M	1	
	b)	Explain about the following assembler directives: ENDP, EQU, EVEN, EXTRN with examples.	7M	1	2
		OR			
2.	a)	Explain the following instruction set of 8086 microprocessor with examples: (i) Bit Manipulation Instructions (ii) Program Execution Transfer Instructions (iii) Interrupt Instructions (iv) Arithmetic Instructions.	8M	1	2
	b)	Write an assembly language program in 8086 to sort the given 'N' numbers in	6M	·	2
		ascending order. UNIT-II	OIVI	1	Ċ
3.	a)	What is DMA? Explain DMA based data transfer using 8257 DMA controller.	7M	2	
	b)	Explain the following data transfers (i) Programmed I/O (ii) Interrupted I/O. OR	7M	2	Ę
4.	a)	With neat functional block diagram, explain the 8255 programmable peripheral			
		interface and its operating modes.	8M	2	5
	b)	What is interrupt vector table of 8086? Explain its structure.	6M	2	1
5.	a)	What is a USART? With a block diagram, explain the architecture of USART.	8M	4	5
	b)	Draw the conversion circuit of TTL to RS232C and explain the necessity of this interface.	6M	4	6
		OR			
6.	a)	Explain the pin structure of RS232C and discuss about voltage and current			
		specifications of RS232C.	7M	4	5
	b)	Write an assembly language program to initialize 8251 and transmit and receive 100 bytes of data.	7M	4	3
		UNIT-IV	7 1 1 1		
7.	a)	Explain briefly serial communication features and modes of 8051.	7M	5	5
	b)	Explain bit level instructions of 8051 microcontroller with appropriate examples. OR	7M	5	2
8.	a)	Draw the internal RAM memory organization of 8051 microcontroller and explain			
		in detail.	7M	5	6
	b)	Write an 8051 assembly program to evaluate the factorial of an integer number N using recursive procedure.	7M	5	3
۵	2)	UNIT-V Explain the features and applications of ARM7 microcontroller.	7M	5	2
J.	a) b)	Explain the PWM controller features in available ARDUINO microcontroller.	7M	5 5	2
	,	OR			
0.	a)	Explain the features and applications of ARM9 microcontroller.	7M	5	2
	b)	Draw the block diagram of ARDUINO microcontroller and explain its main features.	7M	5	6
