Hall Ticket Number :						

Code: 7G16D

R-17

III B.Tech. II Semester Supplementary Examinations December 2022

Object Oriented Programming Concepts

(Common to EEE & ECE)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks.)

		ተተተተተተተ			
		UNIT-I	Marks	СО	BL
1.	a)	List and explain the elements of object oriented programming.	7M	1	1,2
	b)	Define Recursion. Write a C++ program to find factorial of a number.	7M	1	1,6
	,	OR			
2.	a)	Mention the different types of constructors. Elaborate parameterized			
		constructors through an example program.	7M	1	2
	b)	Explain Object oriented programming paradigm. Distinguish between Objects and Classes.	7M	1	2,4
		and Classes.	/ IVI	ı	۷,4
		UNIT-II			
3.		Explain the different types of inheritance in C++ with an example	14M	2	2
		OR			
4.	a)	Explain 'this' pointer with an example program.	7M	2	2
	b)	Write a program to display all odd numbered files of a text file.	7M	2	6
_		UNIT-III	4 4 1 4	0	0
5.		Explain any five string handling functions with suitable examples. OR	14M	3	2
6	a)	What are the operators available in java? Explain them in detail.	8M	3	1,2
O.	b)	Write a java program to find number of sum of all even integers greater than	Olvi	J	1,2
	٠,	50 and less than 150.	6M	3	6
		UNIT-IV			
7.	a)	How can you create and add classes to the package? Illustrate with simple	71.4	4	4.0
	b)	program. What is a Thread? How are threads created?	7M 7M	4 4	1,3 1
	D)	OR	/ IVI	4	ı
8.	a)	What are the different types of exceptions and explain with program.	7M	4	1,2
	b)	Differentiate between interface and abstract class.	7M	4	2
	,				
		UNIT-V			
9.	a)	What are the stages in Thread life cycle? Explain them in detail.	8M	5	1,2
	b)	Write short note on Streams in java.	6M	5	1
		OR		_	_
10.		Write a program to explain thread priorities usage.	7M	5	6
	b)	Explain the method of parameter passing to an applet.	7M	5	2

Hall Ticket Number :						
Code: 7G264						R-17

III B.Tech. II Semester Supplementary Examinations December 2022

Power System Analysis

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

Appropriate form and full questions by chaosing and question from each unit (5x14 = 70 Marks.)

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

*	*	*	*	*	*	*	*	*	

			Marks	СО	Blooms Level
		UNIT-I			2010.
1.	a)	What are Incidence matrices?	7M	1	L1
	b)	Explain about the formation of Bus Incidence matrix by taking suitable			
		example	7M	1	L1
		OR			
2.	a)	Derive the necessary expressions for building up of Z-bus when Element	71.4	4	1.0
	L- \	added between Old bus to Reference Bus	7M	1	L3
	b)	Derive the necessary expressions for building up of Z-bus when Element added between Two Old buses	7M	1	L3
		added between 1 wo Old buses	<i>1</i> IVI	'	LO
		UNIT-II			
3.	a)	What is load flow analysis? What is the necessity for load flow studies?	7M	2	L3
	b)	Explain the data for Load flow studies	7M	2	L2
		OR			
4.		Draw the flow chart for Gauss-Seidel method with PV buses and explain	14M	2	L3
		UNIT-III			
5.		Explain about Short Circuit KVA and short-circuit current.	14M	3	L2
		OR			
6.	a)	Explain different types of reactors briefly	7M	3	L2
	b)	Explain the merits and demerits of different types of system protection using			
		reactors.	7M	3	L2
		LINET IN			
7	۵۱	UNIT-IV	71.4	_	1.0
7.	a)	Derive and explain about Synchronous power coefficient	7M	5	L3
	b)	Explain about power angle curve.	7M	5	L2
		OR			
8.		A 50Hz, 4 pole turbo generator rated 20MVA, 11kv has inertia has constant			
		of H=9kw-sec/KVA. Find thekinetic energy stored in the rotator at synchronous speed. Find the acceleration, if the input less the rotational			
		losses is 26800HP and the electrical power developed is 16MW	14M	5	L3
					_5
		UNIT-V			
9.		What is equal Area Criteria? What are the applications of equal area criterion?	14M	6	L1
		OR			
10.		Define Point by point method for the solution of Swing equation?	14M	6	L1

		R-17	
	C	ode: 7G261 III B.Tech. II Semester Supplementary Examinations December 2022	
		Power System Operation and Control	
		(Electrical and Electronics Engineering)	
		Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks)	
		UNIT-I	
1.	a)	What is an incremental fuel cost? Draw incremental fuel cost curve. How is it used in thermal plant operation?	6M
	b)	150 MW, 220 MW, and 220 MW are the ratings of three units located in a thermal power station. Their respective incremental costs are given by the following equations: $dC1/dP1 = Rs.(0.11P_1+12); dC2/dP2 = Rs.(0.095P_2+14); dC3/dP3 = Rs.(0.1P_3+13);$ Where P1, P2 and P3 are the loads in MW. Evaluate the economical load allocation	
		between the three units, when the total load on the station is (i) 350 MW (ii) 500 MW. OR	8M
2.	a)	Explain the following terms with reference to power plants: (i) heat input – power output curve (ii) heat rate input (iii) incremental input and (iv) generation cost.	8M
	b)	Obtain the condition for optimum operation of a power system with 'n' plants including the effect of transmission losses.	6M
2	۵۱	Evoluin about Chart term hydro thermal as ordination with passagery aquations	4014
3.	a) b)	Explain about Short term hydro thermal co-ordination with necessary equations What is the need of optimal scheduling of hydrothermal system?	10M 4M
	D)	OR	4101
4.	a)	Obtain the condition for economic generation of steam and hydro plants for short term scheduling. State any assumptions are made.	7M
	b)	Discuss the optimal power flow procedures with its inequality constraints and how to handle dependent variables with penalty function.	7M
_	,	UNIT-III	
5.	a)	With a neat diagram explain briefly different parts of turbine speed governing system	8M
	b)	Derive the generator load model and represent it by a block diagram. OR	6M
6.	a)	Write the modeling equations of turbine speed governing system. Develop the block diagram of turbine speed governing mechanism with first order equations.	7M
	b)	Construct a Block Diagram for Generator Load Model and find out the transfer function. UNIT-IV	7M
7.	a)	Explain different components of AGC system with a neat diagram and the working mechanism	10M
	b)	A single area system has the following data Speed regulation, $R = 4 \text{Hz/p.u}$ MW Damping coefficient, $B = 0.1 \text{p.u}$ MW/Hz, When a load change by 2%, determine AFRC and static frequency error.	4M
		OR	
8.	a)	Explain the necessity of maintaining a constant frequency in power system operation	7M
	b)	Draw the block diagram of single area LFC system with integral control and prove that the steady state change in frequency is zero.	7M
		UNIT-V	
9.	a)	What are the merits and demerits of different types of compensating equipment for transmission system?	10M
	b)	Explain the specifications of load compensation OR	4M
10.	a)	Explain how the generators act as VAR sources in a power network	7M
~ =	b)	Explain about the losses that occur due to VAR flow in power system.	7M
	,	***	- · · ·

	Hall Ticket Numb	er:							1
	Code: 7G263							R-17	
	B.Tech.		Switch	Gear ar	ry Examir nd Protect ronics Engi	ction		ber 2022	-
	Max. Marks: 70 Answer all fiv	e units by	choosing	one ques		each unit (5 x 14 =	Time: 3 Hours = 70 Marks)	
۵)	Evaloia the recei	on, theon,		UNIT-I	theer, of or	a interrupti	on in a a	irouit brooker	OM
a) b)	In 110kV system the voltage apperaison Calculate the valuation voltage transient.	the phase aring acro	to ground ss the pol	capacitan e of C.B,	ce is 0.02 µ if a magnet	F and induizing curre	ctance i	s 8H. Calculate A is interrupted.	8M 6M
				OF					
a)	Describe with a remarks and deme	rits	·	•			breake	r and list out its	9M 5M
b)	Write short notes	on current	chopping	UNIT-II		irig.			SIVI
a)	Explain principle	of operatio	n of imped						7M
b)	The current rating determine the op PSM are	g of a relay	is 5A.PSM	1 & TSM re	espectively a				
	PSM	2	4	5	8	10	20		
	Operating time	10	5	4	3	2.8	2.4		7M
۵)	Evaloia briothy ob	aut IDMT a	atatia malayy	OF	2				71.4
a) b)	,		-		ion of an inc	duction type	e relav		7M 7M
J)	December the con-	Struction a		UNIT-II		addidii typi	o rolay.		, , , , ,
a)	What are the abris necessary?	normal con	nditions in a	a large syı	nchronous g	generator a	igainst v	vhich protection	8M
b)	An 11KV, 30 MV resistance. Merz resistance is 9	-price prot	tection is u	used for p	protection of	f winding.	The ne	utral grounding	GN4
	relay.			OF	?				6M
a)	Describe the harr	monic restr	aint relay ι			rmers with	neat dia	gram.	8M
b)	3-Phase, 33/132 200:5. What will b				e of Merz-pr				6M
a)	Explain the consists system.	truction an	d principle			slay relay	applied	to single phase	7M
b)	Give schemes of	protection	for a paral	lel feeder t O F	* * *	One end (ii)Both tl	he ends	7M
a)	Discuss the three	zone dista	ance relay						7M
b)	Explain the carrie	r current p	rotection.						7M
				UNIT-V	·				
a)	Describe the con		•		• •	e arrester w	ith neat	sketch.	7M
b)	Explain the basic	impulse in	sulation le	vel with siq OF					7M
a)	Why is insulation equipment?	n coordinat	tion require	_		system? W	hat is m	neant by BIL of	7M
b)	Explain arcing gro	ounds and	grounding	practices.					7M

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Hall Ticket Number :						D 17	_
Code: 7G265						K-1/	_

III B.Tech. II Semester Supplementary Examinations December 2022

Utilization of Electrical Energy

(Electrical and Electronics Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		UNIT-I	Marks	СО	BL
1.	a)	Classify various types of loads? Give examples of loads which are a function of a speed?	7M	1	3
	b)	Explain the term load equalization	7M	1	3
		OR			
2.	a)	Discuss different types of drives available for transmission of power from the driving mechanisms to loads.	7M	1	4
	b)	Explain the importance of load equalization with an example.	7M	1	3
		UNIT-II			
3.	a)	Explain the procedure for submerged arc welding	7M	2	3
	b)	Write the comparison between AC and DC welding.	7M	2	3
		OR			
4.	a)	What is the nature of electric supply required for electric arc welding? Also explain the equipment required for electric arc welding	7M	2	3
	b)	What are the advantages of using coated welding electrodes?	7M	2	3
		UNIT-III			
5.	a)	Explain the following terms	71.4	0	•
		(i) Illumination (ii) Luminous flux (iii) MSCP (iv) Lumen (v) Lamp efficiency	7M	3	3
	b)	The flux emitted by 100-W lamp is 1,400 lumens placed in a frosted globe of 40 cm diameter and gives uniform brightness of 250 milli-lumens/m2 in all directions. Calculate the candel power of the globe and the percentage of light absorbed by the globe.	7M	3	3
6	a)	OR State and prove Inverse square law and cosine law.	7M	3	3
0.	b)	The luminous intensity of a source is 600 candela is placed in the middle of a $10 \times 6 \times 10^{-10}$	7 101	5	3
	D)	2 m room. Calculate the illumination:			
		(i) At each corner of the room. (ii) At the middle of the 6-m wall.	7M	3	3
		UNIT-IV			
7.	a)	Explain the requirements of ideal traction system	7M	4	3
	b)	A 2,300-ton train proceeds down a gradient of 1 in 100 for 5 min, during which period, its speed gets reduced from 40 to 20 kmph by the application of the regenerative braking. Find the energy returned to the lines if the tractive resistance is 5 kg/ton, the rotational inertia 10%, and the overall efficiency of the motors during regeneration is 80%.	7M	4	3
0	- \	OR			
8.	a)	A train has schedule speed of 32 kmph over a level track distance between two stations being 2 km. The duration of stop is 25 s. Assuming the braking retardation of 3.2 kmphps and the maximum speed is 20% greater than the average speed. Determine the acceleration required to run the service.	7M	4	3
	b)	Derive the expression for (i) The tractive effort for propulsion of train on level track.			
	,	(ii) The tractive effort for propulsion of train up and down a gradient UNIT-V	7M	4	3
9.	a)	Explain the impact of modern drive trains on energy supplies	7M	5	3
	b)	Explain regenerative braking applied in electric vehicles	7M	5	3
		OR			
10.		Explain about different battery storage systems.	14M	5	3

	Hall ⁻	Ticket Number :												
L		e: 7G262											R-17	
,		III B.Tech. II Ser	۸icro	proc	-	ors c	ınd	Micı	roc	ontr	oller		nber 2022 Time: 3 Hours	-
	_	ver any five full qu	jestior	ns by	choos	***	*****	juesti -	on fr	om e	each	unit (5		
1.	a)	Explain various A	∆ddres	ssina r	nodes		VIT-I 086 r	nicro	oroce	essor				7M
١.	b)	Write an 8086 Al		•								eleme	ante	7 IVI 7M
	D)	White all 6000 Ai	_1 (01	iiia tii	Julii	01 111	OR	13 111	uic c	шау	01 10	Cicinic	into.	/ IVI
2.	a)	Explain the mem	ory se	gmen	tation	and		ıction	byte	Que	eue of	f 8086		7M
	b)	Write an assemble a's in given string	oly lan	iguage	prog				•					7M
						UN	IIT–II							
3.	a)	Describe the inte	rrupts	of 80	86 and	d its t	ypes	with	serv	ce ro	outine	;		6M
	b)	Explain in detail	about	8259	PIC a	rchite	ecture	;						8M
							OR							
4.		Explain in detail Control words of		` '		•		` '			teset	and (i	ii) Mode Set	14M
						UN	IT–III							
5.	a)	What is RS-2320	C devi	ce and	l discu	uss it	s app	lication	on w	th T	ΓL			7M
	b)	Draw the circuit	of RS2	232C t	o TTL	conv	ersic/	n an	d exp	olain	this ir	nterfac	e.	7M
							OR							
6.		What are MODE MODEM is contr				•								14M
						UN	IT–IV	,						
7.	a)	Discuss the various controller	ous typ	oe of a	addres	sing	mod	es wi	th su	itable	e exa	mple ii	n 8051 micro	7M
	b)	Write an 8051 as	sembly	/ langı	ıage p	rogra	m to OR	multip	oly th	e giv	en nu	mber 4	18H and 30H.	7M
8.	a)	Give PSW of 805	51 and	l desc	ribe th	e us	e of e	each l	oit in	PSV	/			7M

7M

b) With the help of neat diagram explain the memory organization of 8051 microcontroller

UNIT-V

9. a) Explain the Pin functions of Arduino with a neat block diagram

7M

b) Explain about PWM and ADC in Arduino

7M

OR

10. Draw the diagram of ARM architecture and explain the function of each block along with different features in it.

14M
