	На	all Ticket Number :	-
		nde: 7G564	
	Co	III B.Tech. II Semester Supplementary Examinations May/June 2022	J
		Instrumentation and Control Systems	
		(Mechanical Engineering)	
		ax. Marks: 70 Time: 3 Hours	
	Ar	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
			Marks
1.		UNIT–I Explicate the working principle of variable inductive transducers.	14M
••		OR	14101
2.		Explain the sources of errors in measurements and measuring instruments	14M
		UNIT–II	
3.		Discuss briefly about the temperature measurement instruments.	14M
		OR	
4.		Explain the following vacuum gauges	14M
		i) Thermocouple type conductivity gauge and ii) Pirani gauge	
		UNIT-III	
5.		Describe briefly about the Strain gauge accelerometer with a neat sketch.	14M
		OR	
6.		Explain the working principle of Pneumatic load cell with a neat sketch.	14M
		UNIT–IV	
7.		Distinguish the bonded and unbounded type of resistance strain gauges.	14M
		OR	
8.		Describe the properties of materials used for strain gauges.	14M
		UNIT-V	
9	a)	Explain briefly about the Servomechanisms.	7M
0.	b)	Discuss about any three methods of block diagram reduction.	7M
	,	OR	
10.	a)	What are the standard test inputs?	7M
	b)	Write short note on (i) bode plots (ii) gain and phase margin	7M

												-		
	Hall Ticket Numb	er:											[
C	Code: 7GA61	i										_	R-17	
-	III B.Tech.	II Seme	ester	Supp	oler	nen	tary	Exai	min	atio	ns N	/ay/J	lune 2022	
		\anag												
				(Med	char	nica	l Eng	inee	ring)				
	Max. Marks: 70		L I						. .				Time: 3 Hour	
/	Answer any five t	ui ques	nons r	by ch	OOSII	-	ne qu *****	Jestic	on m	ome	eacr	i Unit (5x14 = 70 Marks)
														Ма
						IT–I			_					
1.	Define manag	erial eco	nomic	s. Illu			w it is	s help	os in	solv	ing n	nanage	erial problems.	14
_	\					DR								
2. a	,	•				•	o with	othe	er ar	eas.				7
b) Write about el	asticity o	y dem	hand f										7
~					-	T–II							. I .	
3.	Define cost. E	xplain th	e diffe	erence			ncept	s use	din	the	oroce	ess of	cost analysis.	14
4	Define Coat A	I : - O	-	:)R		1			4	·	af a a at	
4.	Define Cost A	halysis?	Expla				st cor	icept	s an	a De	term	inants	of cost,	14
5.	Distinguish bo		ublic			T–III	tor or	mno	niaa					14
5.	Distinguish be	tween p		anu pi)R		тра	mes	•				14
6. a) Advantages a	nd disad	vanta				du fa	mily	huci					-
о. а b	, G			-	•		uu ia	i i i i i y i	Jusi	1033	•			-
U		vennei		·		T–IV								1
7.	Narrate the cap	oital bude	netina	L	-		nature	and	sian	ifica	nce	oudaet	ina decisions	14
			Jourig)R	lature	and	eign	mea	,	suuget	ing declerence	•
8.	A business firr	n is thinl	kina of	f choc			riaht	mach	nines	s for	their	purpo	se after financial	
			-		-		-						ive years to the	
	business firm	• •											-	
						Mach	nine 1	(Rs)) N	/lach	ine 2	(RS)		
		Initial c	ost			(2000	00)		(2	2800	0)			
		annual	cash	inflo	w									

	maoriii						
Initial cost	(20000)	(28000)				
annual cash infl	ow						
1year	8000		10000				
2year	12000		12000				
3year	9000		12000				
4year	7000		9000				
5year	6000		9000				
Choose the mach	ine based o	n					
1) payback period	d 2) accou	nting rate	return				
	UNIT–V						

14M

14M

7M

7M

9. Briefly discuss accounting concepts and conventions with examples.

OR

- 10. a) Activity ratios are illustrated suitable examples.
 - b) Capital structure ratios are illustrated suitable example.

	Ha	all Ticket Number : R-17]
	Co	ode: 7G562	
		III B.Tech. II Semester Supplementary Examinations May/June 2022 Design of Machine Elements-II (Mechanical Engineering)	
		Time: 3 Hours nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
			M
	a)	UNIT-I What are journal bearings? Give a classification of these bearings.	
	b)	Design a full hydrodynamic journal bearing with following specification for machine tool application: Journal diameter=75 mm, radial load=10 kN, Journal speed=1440 rpm, Minimum oil film thickness=22.5 microns, inlet temperature=40° C, bearing material=Babbitt. Determine the length of the bearing and select suitable oil for this application.	1
	2)	OR Distinguish the "Illudrodynamic" and "Illudrostatic Desringe" with figures and suitable	
	a)	Distinguish the "Hydrodynamic" and "Hydrostatic Bearings" with figures and suitable applications.	
	b)	A journal bearing 60 mm is diameter and 90 mm long runs at 450 r.p.m. The oil used for hydrodynamic lubrication has absolute viscosity of 0.06 kg / m-s. If the diametral clearance	
		is 0.1 mm, find the safe load on the bearing.	
•	a)	Explain the different types of antifriction bearings	
	b)	A bearing is required to carry 4500 N stationary radial load. The shaft rotates at 1000rpm and the life desired is 30000 hrs. The running conditions are steady, no shock loading select a suitable bearing.	
		OR	
•		Select a single row deep groove ball bearing for a radial load of 4000 N and an axial load of 5000 N, operating at a speed of 1600 r.p.m. for an average life of 5 years at 10hours per day. Assume uniform and steady load.	
		Design a cast iron piston for a single acting internal combustion engine having 200 mm as	
•		the cylinder bore. The maximum explosion pressure is 4 MPa. Draw a neat dimensional sketch of the piston to bring out the details.	
		OR	
•		Describe the design procedure for the connecting rod of an I.C.Engine.	
		UNIT-IV	
•		In a horizontal belt drive for a centrifugal blower, the blower is belt driven at 600 r.p.m. by a 15 kW, 1750 r.p.m. electric motor. The centre distance is twice the diameter of the larger pulley. The density of the belt material = 1500 kg/m ³ ; maximum allowable stress=4 MPa; $\mu_1 = 0.5$ (motor pulley); $\mu_2 = 0.4$ (blower pulley); peripheral velocity of the belt = 20 m/s. Determine the following: a. Pulley diameters; b. belt length; c. cross-sectional area of the belt; and d. minimum initial tension for operation without slip;	
		OR CONTRACTOR CONTRACT	
•		Design a close coiled helical compression spring for a service load ranging from 2250 N to 2750 N. The axial deflection of the spring for the load range is 6 mm. Assume a spring index of 5. The permissible shear stress intensity is 420 MPa and modulus of rigidity, G=84kN/mm ² . Neglect the effect of stress concentration. Draw a fully dimensioned sketch of the spring, showing details of the finish of the end coils.	1
		UNIT-V	
•		Design a pair of steel spur gears σ_0 = 180 MPa full depth to transmit 40 kW at 4000 rpm of	
		20 tooth pinion at a transmission ratio of 5.The teeth are 20 ⁰ full depth involute form. Find the module, face width and pitch diameters. Recommend suitable hardness for both gears. OR	
_	a)	Explain Lewis beam strength equation.	
•	b)	Explain design procedure for helical gears.	
	- /	***	

	L	all Ticket Number]			
		all Ticket Number :							<u></u>		<u> </u>		R-	17	
	Co	o de: 7G563 III B.Tech. II Se	mesto			eat T	ran	sfer			ns N	/ay/_	lune 202	22	
		lax. Marks: 70 nswer any five full qu	vestior	•		ng o					each	unit (3 Hours Marks)	
					UN	IT–I									Mar
•	a) b)	Define heat transfer A hot plate of area =	0.2m ²	at 59°	C lose	s hea	it to a	roor	n at t	temp	eratu	re 20º(C. Given t		10
		transfer coefficient a	cting o	on the	•	te =6)R	.277\	/V/m2	K fin	id ou	t the i	ate of	heat trans	ster.	4
		A plane wall is 150 and surface temper a) Heat flow ac	ature a ross th	are ste he pla	eady a ne wal	t 150 I.	0C a	nd 4					ty is 9.35\	N/m0C	
-		b) Temperature A steel ball [c=0.46	•		UN	IT–II			in d	iame	ter aı	nd initi	ally at a u	uniform	14
		temperature of 450 temperature is ma 10W/m2.ºC. Calcula	aintain	ned a	t 100	°C.	The	con	/ecti	on h	neat-t	ransfe	er coeffic	ient is	14
		Derive an express steady state conditi		r critio	cal thi		ss of	insu	ulatic	on fo	rac	cylinde	er assumi	ng the	14
	a)	Illustrate the develo	oment	t of hv		T-III namio	bou	ndar	v lav	er in	side a	a pipe			6
	b)	List out the dimer mathematical expre	nsionle	ess n	umbers	s us						•••	ation an	d their	٤
		State and explain th		kinah		DR דו	oorc	m fo	r din	onci	onal	analye	vie		14
•				, KIII YII		T–IV				101131	Unai	anarys	515		1-
•	a)	How the condensat	ion an	d boili	ng phe	enom	enor	hea	t trar	nsfer	takes	s place	Э.		4
	b)	Two large parallel p of 527 ^o C and 127 ^o C sides is placed bet shield. (ii) Heat tran	C resp tween	ective them	ly. A r . Calc	adiat ulate	ion s (i) ⊦	hield Ieat	hav trans	ring e	emiss	ivities	of 0.05 c	on both	10
						DR									
•		Two very large par percentage reduction (ϵ =0.04) is placed b	ion in	heat	trans n.	fer v						•			14
		Derive an expression	on for t	the LN	1TD m	IT–V ethoo DR	d of C	Count	er flo	ow he	eat ex	xchan	gers?		14
•	a)	What advantage do	es the	effec	-		ГU m	etho	d ha	ve ov	er th	e LMT	D method	d?	7
	b)	Why is a counter flo	w exc	hange	er more		ctive	than	a pa	aralle	el-flov	v exch	anger?		7