Γ	Hall	Ticket Number :	_
L		R-17	
	Code	III B.Tech. II Semester Supplementary Examinations December 2022 Instrumentation and Control Systems (Mechanical Engineering)	
		. Marks: 70 Yer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********	
1.		UNIT–I Draw the schematic construction of LVDT and explain its working principle. What are its advantages and limitations? OR	14M
2.		Discuss about the Static characteristics of measuring instruments.	14M
3.		UNIT–II Explain the working principle of Hot wire anemometer. OR	14M
4.		Describe the principle of operation of a McLeod gauge with a neat sketch and mention its applications, merits and demerits.	14M
5.		UNIT-III How can seismic instruments can be used as an accelerometer? OR	14M
6.		Describe the working principle of Piezoelectric accelerometer with a neat sketch.	14M
7.		UNIT-IV Discuss briefly about strain measuring techniques	14M
		OR	
8.		Distinguish between bonded and unbounded type of resistance strain gauge.	14M
0		UNIT-V	
9.		Explain in brief about Routh-Hurwitz stability criterion. OR	14M
10.	a)	With the help of block diagram explain how is the water level in a boiler controlled?	7M
	b)	Explain the Concept of stability and necessary conditions for stability.	7M

	Hall Ticket Number :	R-17		
	III B.Tech. II Semester Supplementary Examinations December	2022		
	Managerial Economics and Financial Analysis			
	(Mechanical Engineering)	.		
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = ********	ne: 3 Hou = 70 Mark		
		Marks	СО	BL
1.	UNIT-I What do you understand by elasticity of demand? How do you measure its?			
1.	What is its significance?	14M	2	2
	OR			
2.	Define managerial economics? Explain nature and scope of managerial			_
	economics.	14M	1	2
	UNIT–II			
3.	How cost out-put relationship helps the entrepreneurs in expansion decisions.	14M	3	2
	OR		-	_
4.	a) Objectives of break-even analysis.	7M	2	2
	b) Write about marginal rate of technical substitutions.	7M	2	2
5.	UNIT–III Write about public sector enterprises in detail.		0	0
5.	OR	14M	3	2
6.	Explain monopolistic market and price out-put determination in short run and			
	long run.	14M	3	3
7.	UNIT-IV		0	0
7.	What are the main sources of raising capital in detail? OR	14M	3	2
8.	Narrate the capital budgeting and elaborate nature and significance, budgeting			
0.	decisions.	14M	2	2
0				
9.	Prepare journal entries from the following Jan 1 started business with cash Rs 50000			
	Jan 3 deposit into bank Rs 65000			
	Jan 10 purchased machinery Rs54000 from Manohar.			
	Jan 16 sold goods for cash Rs 72000			
	Jan 20 received cash from business Rs 62000			
	Jan 21 paid salary Rs 2000 Jan 23 discount received Rs 400			
	Jan 24 Return goods from siva Rs 1000			
	Jan 27 with drawn from the bank Rs 2000	14M	3	3
	OR			
10.	Describe double entry system and trail balance advantages.	14M	2	2

	Hall	Ticket Number :													
	Cod	e: 7G562					I I					J		R-17	
		III B.Tech. II Ser	nest	er S	Supp	olem	nentary	Exar	nind	atior	ns D	ecer	nb	er 2022	
			D	esi	gn d	of M	achine	Ele	me	nts-	II				
					Med	char	nical Eng	ginee	ring)			_		
		x. Marks: 70 wer any five full qu	vestio	ns b	y ch	oosir	ng one qı *******	uestic	on fro	om e	each	unit (ime: 3 Hours 4 = 70 Marks)	
							UNIT-	J							
1.	a)	Enumerate the im	porta	ant p	hysi	cal c			of a	goo	d bea	aring I	ma	terial.	6M
	b)	Describe the desi	gn pi	roce	dure	for a	a journal l	beari	ng.						8M
							OR								
2.		Design a journal l journal=20000N, s absolute viscosity Maximum bearing lubricating oil requ	Spee y at g pre uired	d of 55° essu for a	the C=0. re fo artific	jourr .017I or th ial co	nal=900rp kg/m-s, / ne pump= poling, if t	m, Ty Ambie =1.5N he ris	ype ent I/mm	of oi temp ı².Ca	l is : perati lcula	SAE 1 ure o te als	10, of c so	for which the bil = $15.5^{\circ}C$, mass of the	1 4 4 4
		l0°C heat dissipati		enic	ient=	=123									14M
3.	a)	What are the adva	ntad		Roll	ina c	_		s 0.	or eli	dina	conta	ct h	earings?	6M
5.	a) b)	Explain the proced	Ŭ			•		•			•			earings:	8M
	0)			1000		loong	OR	i Olini iş	y 001	naor	beai	ing.			OIVI
4.	a)	Explain dynamic L	oad I	Ratir	ng for	Roll		act B	earir	ngs u	Inder	Varia	able	Loads	6M
	b)	A single-row deep a thrust force of 3 shaft rotates at 12 (ii) Estimate the re	kN. ⊺ 00 rp	The m. (value (i) Es	es of tima	X and Y the life	factor	's are	e 0.5	6 an	d 1.5	res	pectively. The	8M
							UNIT-I								
5.		Describe the desig	gn pro	bced	ure f	or th		pe pis	ston	of ar	I.C.	Engin	e.		14M
							OR								
6.		Design a cast iron Cylinder bore=100 effective pressure= BP per hour, highe required and state	mm, ⊧0.75 r calc	strok N/m prific	ke=12 m², n value	25 m nech e = 42	m, maxim anical effi 2000 kJ/kg	um g ciency g, spe	as p /=80	ressu %, fu	ure=5 uel co	N/mr	n², iptic	induced mean m=0.15 kg per	14M
7.		Design and draw a	a valv	n en	rina	ofa			or the	≏ foll	owin	a onei	rati	na conditions:	
1.		Spring load when Spring load when Maximum inside d	the va the va iame	alve alve ter o	is op is clo f spr	oen osed ing =	= 400 N = 250 N 25 mm				Own	g opei	ratii	ig conditions.	
		Length of the sprir Length of the sprir Maximum permiss	ng wh	en t	he va	alve i	s closed =	= 50 r							14M
8.		A leather belt 9 m 336 r.p.m. If the a 2MPa, find the po 980kg/m ³ , and the	active ower	arc cap	on tl acity	he si of t	maller pul he belt.	lley is The c	s 120 dens)° ar ity o	nd the	e stres ther n	ss i	n tight side is	14M

UNIT–V

- 9. a) What are the advantages of Spur gears?
 - b) The pitch circle diameters of the pinion and gear are 100 mm and 300 mm respectively. The pinion is made of plain carbon steel 40C8 (S_{ut}=600 MPa) while the gear is made of grey Cast Iron FG 300 (S_{ut}=300 MPa). The pinion receives 5 kW power at 500 rpm through its shaft. The service factor and the factor of safety can be taken as 1.5 each. The face width of the gear can be taken as 10 times that of the module. Assume that the velocity factor accounts for the dynamic load. Determine (i) module and (ii) the number of teeth on the pinion and the gear.

OR

- 10. a) Derive the Lewis equation for the beam strength of a gear tooth.
 - b) Design a pair of helical gears to transmit power of 15 kW at 3200 rpm with speed reduction 4:1, pinion is made of cast steel 0.4% C–untreated. Gear made of high grade C.I. Helix angle is limited to 26^o and not less than 20 teeth are to be used on eighter gear.

10M

10M

4M

4M

	ada	: 7G563	
C		III B.Tech. II Semester Supplementary Examinations December 2022	
		Heat Transfer	
		(Mechanical Engineering)	
		. Marks: 70 Firme: 3 Hours Firme: 3 Hours one question from each unit (5x14 = 70 Marks)	
		UNIT–I	
1.		Derive three dimensional general heat conduction equation in Cartesian coordinates.	14
		OR	
2.		The wall of an industrial furnace is constructed from 0.15m thick fireclay brick having steady state operation reveal temperature of 1400 k and 1150 k at the inner and outer surfaces respectively. What is the rate of heat loss through a wall that is 0.5m by 1.2m on a side?	14
3.		Derive the equation for a heat transfer at critical value thickness for a cylinder	
		pipe?	14
		OR	
4.		A long rod 5 cm diameter its base is connected to a furnace wall at 150°C, while the end is projecting into the room at 20°C. The temperature of the rod at distance of 20 cm a part from its base is 600C. The conductivity of the material is 200W/mk. Determine convective heat transfer coefficient.	14
			•
5.	a)	What is the hydraulic diameter? When is it used?	Ę
	b)	Define Reynolds number, Prandtl number and Nusselt number	ę
	,	OR	
6.		Water at 60 oC enters a tube of 2.54-cm diameter at a mean flow velocity of 2 cm/s. Calculate the exit water temperature if the tube is 3.0 m long and the wall	
		temperature is constant at 80oC.	14
-		UNIT-IV	
7.		Explain pool boiling with neat sketch showing different regimes. OR	14
0		A truncated cone has top and bottom diameters of 10 cm and 20 cm and a height	
8.		of 10 cm. Calculate the shape factor between the top surface and the side and also	
		the shape factor between the side and itself.	14
		UNIT–V	
9.		Derive an expression for the LMTD method of Parallel flow heat exchangers?	14
		OR	
0.	a)	What are fouling factors? Explain their effects in the heat exchangers design.	6
	b)	Determine the overall heat transfer coefficient based on outer area of a 3.81cm O.D and 3.175 cm I.D brass tube($k = 103.8$ W/m K) if the heat transfer coefficients	