	Hal	Il Ticket Number :									
	Cod	R-17									
		III B.Tech. II Semester Supplementary Examinations Nov/Dec 2023									
		Object Oriented Programming Concepts									
	MAC	(Common to EEE & ECE) ax. Marks: 70 Time: 3 Hours									
		swer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ***********************************									
		UNIT-I									
1.	a)	Write short note on destructor. Explain with suitable example.	7M								
	b)	Explain merits and demerits of Object Oriented methodology.	7M								
		OR									
2.	a)	Define structure. Explain with any suitable example program.	8M								
	b)	List and explain data types in C++.	6M								
		UNIT-II									
3.	a)	When do you use virtual base class? Explain with suitable example.	6M								
	b)	Explain function overloading and operator overloading with examples.	8M								
		OR									
4.	a)	Define Inheritance. Write a C++ program to demonstrate multiple inheritances.	7M								
	b)	What is mean by Overloading? Explain about function overloading with suitable program.	7M								
		UNIT-III									
5.	a)	a) What is an array? Discuss various array definitions in java with an example.									
	b)	Discuss about primitive data types.									
		OR									
6.	a)) Define Class & Object in Java? Explain with suitable example.									
	b)	Write a java program to print first N Fibonacci Series using While loop.									
		UNIT-IV									
7.	a)	How to define a user exception in a program? Illustrate with an example.	7M								
	b)	b) Write the steps involved in adding a class to a package.									
	·	OR	7M								
8.	a)	What is a Thread? How are threads created?	7M								
	b)	Write an example program to create threads using Thread class.	7M								
		UNIT-V									
9.	a)	List the types of character streams in java. Explain any four character streams with a									
•	- .,	suitable example.	8M								
	b)	Demonstrate the passing parameters to the applet with example.	6M								
	_	OR									
10.	a)	What is an Applet? Explain how to create an Applet.	7M								
	b)	What is multithreading? What are the priorities given for multithreading.	7M								

	Hal	I Ticket Number :								
	Cod	R-17								
		III B.Tech. II Semester Supplementary Examinations Nov/Dec 2023								
		VLSI Design								
	A.4 or	(Electronics and Communication Engineering)								
	_	Time: 3 Hours swer any five full questions by choosing one question from each unit (5x14 = 70 Marks) *********								
		UNIT-I								
1.	a)	Explain the fabrication of Bi-CMOS technology with relevant diagrams.	9M							
	b)	Draw the transfer characteristics of CMOS inverter and explain.	5M							
		OR								
2.	a)	Derive the relationship between pull-up to pull-down ratio for an NMOS inverter driven by another NMOS inverter(Zpu/Zpd)	9M							
	b)	List the differences between CMOS and Bipolar technologies.	5M							
	,	UNIT-II	0							
3.	a)									
	b)	Explain the layers NMOS.	7M							
		OR								
4.	a)	 a) Prepare the stick diagram and layout diagram for NAND gate using CMOS encoding style. 								
	b)	Discuss in detail about scaling and derive scaling factors for various parameters	7M							
		UNIT-III								
5.		Derive an expression for sheet resistance (Rs) and apply the concept for calculation of sheet resistance for CMOS inverter.	14M							
		OR								
6.	a)	a) Draw the circuit diagram of inverting type NMOS Super buffer and explain.								
	b)	b) Calculate inverter resistance for nMOS with Zpu=4 for pull up transistor and Zpd=11 pull down transistor and for CMOS Zpu=1 for pull up transistor and Zpd=1 for pull down transistor.								
		UNIT-IV	8M							
7.	a)	With a neat diagram, explain 4-bit barrel shifter.	7M							
	b)	b) Design an array multiplier and discuss the merits and demerits with an example.								
	•	OR								
8.	a)	Explain 4-bit Serial- parallel multiplier with a neat diagram.	7M							
	b)	Explain about High density memory elements with neat diagrams.	7M							
		UNIT-V								
9.	a)	What is testing? Discuss the importance of testing?	6M							
	b)	Explain about chip level test techniques?	8M							
10.	رد م	OR What are the test principles to test the circuit?	GN /							
10.	a) b)	Discuss about design capture tools and design verification tools?	6M 8M							
	ω_j	2.21321 Seed accign captain toole and accign formedation toole.	CIVI							

	Н	all Ticket Number :											_				
	Сс	ode: 7G364							<u> </u>		J <u>. </u>	J		R	R-17		
	III B.Tech. II Semester Supplementary Examinations Nov/Dec 2023																
		/E		_		_	al Pr			_	rir	na)					
	(Electronics and Communication Engineering) Max. Marks: 70 Time:										e: 3 Hou	ırs					
		Answer five questi	ons by ch	oosir	na or		***** iestio		m ea	ich u	ınit (:	5 x 1	4 = '	70 Ma	arks)		
					.9 -						(Marks	CO	BL
							IT–I										
1.	a)	Check the for equations for lin	•	•													
		y[n] - y[n-1] = x[n].											7M	CO1	L2		
	b)	Determine the impulse response for the cascade of two LTI systems having impulse responses															
		$h_1[n] = \left(\frac{1}{2}\right)^n u[$	[n] and	$h_2[n$		(4)	n u[i	n]							7M	CO1	L3
				_		DR _				_							
2.	•	Define DFT and				•		•	•							CO1	
	b)	Find the IDFT o	f the se	que			<) = I T-II		2-3j	, 4,	2+3	j}.			7M	CO1	L2
3.		Compute the eigenstander Compute the eigenstander Compute the Eigenstander Computer Computer the Eigenstander Compute the	ght-poir	it DF	-T c	of th	e se	que	ence	by	usir	ng D)IF				
		$x(n) = \begin{cases} 1, \\ 0, \end{cases}$	$0 \leq n$	< 7	7												
		(0,	otherv	vise	3										14M	CO1	L3
4		D (1 P	0.0		\.T	0							41	ı			
4.		Draw the radix- DFT sequence;	-					_	apr	OD'	tain	ea b	y ti	ne	14M	CO1	L3
						UNI	T–II										
5.	a)	a) Using Bilinear transformation, design a high pass filter															
		monotonic in pass band with cutoff frequency of 1000 Hz and down 10dB at 350 Hz. The sampling frequency is 5000 Hz.									71/1	000					
	h)	Explain the pro				-	•	-		•				tha	/ IVI	CO2	L2
	D)	Chebyshev app			uc.	Sigi	ııı ıg	/\III	alog	1110	CIS	usii	ıg	liic	7M	CO2	L2
						0	R										
6.	a)	Design an FIR I ideal frequency	-		e, di	gita	l filte	er a _l	opro	xim	atin	g th	е				
		Hd() = 1 for	•		6;												
		0 for	r /6	<		,	usi	ng a	а На	mm	ning	win	dov	٧.	7M	CO2	L3
										Page 1 o							

Code: 7G364

b) Design a FIR digital low-pass filter with a cutoff frequency of 1 kHz and a sampling rate of 4 kHz with 7 samples using Fourier series method 7M CO₂ L₃ **UNIT-IV** Explain about sampling rate conversion by a rational factor I/D. 7. 14M CO₃ L₂ OR 8. Discuss about multistage implementation of sampling rate 14M CO3 L2 conversion. UNIT-V Explain about Spectral analysis of non-stationary Signals. 14M CO4 L2 9. **OR** 10. a) Explain sub-band coding of speech signals in detail. 7M CO4 L2 7M CO4 L2 b) Explain over sampling A/D and D/A conversion. *** End ***