## Code: 19A364T

III B.Tech. II Semester Supplementary Examinations April 2023

## Design of Machine Elements-II

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks )
*********

## UNIT-I

1. a) State any four objectives of lubrication.
b) A 80 mm long journal bearing supports a load of 2800 N on a 50 mm diameter shaft. The bearing has a radial clearance of 0.05 mm and the viscosity of the oil is $0.021 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$ at the operating temperature. If the bearing is capable of dissipating $80 \mathrm{~J} / \mathrm{s}$, determine the maximum safe speed.

## OR

2. a) What are the assumptions made in Petroff's equation?
b) Following data refer to a 3600 hydrodynamic journal bearing

Load $=3.2 \mathrm{kN}$, speed $=1490 \mathrm{rpm}$, diameter $=50 \mathrm{~mm}$, length $=50 \mathrm{~mm}$, radial clearance $=0.05 \mathrm{~mm}$, Viscosity $=25 \mathrm{cP}$. Assume heat generated is carried away by oil flow. Calculate coefficient of friction, power lost in friction, minimum oil film thickness, flow and temperature rise.

## UNIT-II

3. A bearing for an axial flow compressor is to carry a radial load of 2500 N and thrust of 1500 N . The service imposes light shock and the bearing will be in use for 40 hours/week in 5 years. The speed of the shaft is 1000 rpm . Select suit able ball bearing for the purpose and give the required tolerances on the shaft and the housing. Diameter of the shaft is 50 mm .

## OR

4. A ball bearing is operating on a work cycle consisting of three parts-a radial load of 3000 N at 1440 rpm for one quarter cycle, a radial load of 5000 N at 720 rpm for one half cycle, and radial load of 2500 N at 1440 rpm for the remaining cycle. The expected life of the bearing is 10000 h . Calculate the dynamic load carrying capacity of the bearing.

## UNIT-III

5. Determine the dimensions of an I-section connecting rod for a petrol engine from the following data: Diameter of the piston $=110 \mathrm{~mm}$; Mass of the reciprocating parts $=2 \mathrm{~kg}$; Length of the connecting rod from centre to centre $=$ 325 mm ; Stroke length $=150 \mathrm{~mm}$; R.P.M. $=1500$ with possible overspeed of 2500; Compression ratio $=4: 1$; Maximum explosion pressure $=2.5 \mathrm{~N} / \mathrm{mm} 2$.

$$
6
$$6. a) Explain the various types of crankshafts with neat sketches.4M

b) Describe the strength and proportions of overhung crankshaft.
UNIT-IV
7. An open belt connects two flat pulleys. The pulley diameters are 300 mm and 450 mm and the corresponding angles of lap are $160^{\circ}$ and $210^{\circ}$. The smaller pulley runs at 200 r.p.m. The coefficient of friction between the belt and pulley is 0.25 . It is found that the belt is on the point of slipping when 3 kW is transmitted. To increase the power transmitted two alternatives are suggested, namely (i) increasing the initial tension by $10 \%$, and (ii) increasing the coefficient of friction by $10 \%$ by the application of a suitable dressing to the belt. Which of these two methods would be more effective? Find the percentage increase in power possible in each case.
8. a) Discuss the materials and practical applications for the various types of springs. ..... 4 M
b) It is required to design a helical compression spring subjected to a maximum force of 1250 N . The deflection of the spring corresponding to the maximum force should be approximately 30 mm . The spring index can be taken as 6 . The spring is made of patented and cold-drawn steel wire. The ultimate tensile strength and modulus of rigidity of the spring material are 1090 and $81370 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. The permissible shear stress for the spring wire should be taken as $50 \%$ of the ultimate tensile strength. Design the spring and calculate:
(i) wire diameter;
(ii) mean coil diameter;
(iii) number of active coils;
(iv) total number of coils; and (v) free length of spring
UNIT-V


#### Abstract

9. It is required to design a pair of spur gears with $20^{\circ}$ full-depth involute teeth based on Lewis equation. The velocity factor is to be used to account for dynamic load. The pinion shaft is connected to a $10 \mathrm{~kW}, 1440 \mathrm{rpm}$ motor. The starting torque of the motor is $150 \%$ of the rated torque. The speed reduction is $4: 1$. The pinion as well as the gear is made of plain carbon steel 40 C 8 ( $\mathrm{S}_{\mathrm{ut}}=600 \mathrm{MPa}$ ). The factor of safety can be as 1.5.Design the gears, specify their dimensions and suggest suitable surface hardness for the gears.


## OR

10. a) Explain design procedure for spur gears. 8 M
b) Derive the Lewis equation for the beam strength of a gear tooth. 6 M


III B.Tech. II Semester Supplementary Examinations April 2023

# Heat Transfer <br> (Mechanical Engineering) 

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. Derive the general heat conduction equation in cylindrical coordinates.

## OR

2. The temperatures on the faces of a plane wall 15 cm thick are 3750 C and 850 C . The wall is constructed of a special glass with the following properties: $\mathrm{k}=0.78$ $\mathrm{W} / \mathrm{moC}, \rho=2700 \mathrm{~kg} / \mathrm{m} 3, \mathrm{Cp}=0.84 \mathrm{~kJ} / \mathrm{kgoC}$. What is the heat flow through the wall at steady-state conditions?

## UNIT-II

3. Derive the temperature distribution equation for a lumped heat system in terms of Fourier and Biot numbers.

## OR

4. A $50 \times 50 \mathrm{~cm} 2$ aluminium slab of 6 mm thick is at $400^{\circ} \mathrm{C}$ initially and it is suddenly immersed in water, so its surface temperature is lowered to $50^{\circ} \mathrm{C}$. Determine the time required for the slab to reach $120^{\circ} \mathrm{C}$. Take heat transfer coefficient, $\mathrm{h}=100 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$.

## UNIT-III

5. Show that $\mathrm{Nu}=\mathrm{f}(\mathrm{Re}, \mathrm{Pr})$ for forced convection by the use of dimensional analysis OR
6. Calculate the average co-efficient of heat transfer for natural convection over a vertical plate 30 cm high at $50^{\circ} \mathrm{C}$. The surrounding air is at $30^{\circ} \mathrm{C}$. Also calculate the boundary layer thickness at the trailing edge of plate.

## UNIT-IV

7. Water at atmospheric pressure is boiled in a kettle made of copper. The bottom of the kettle is flat, 30 cm in diameter and is maintained at a temperature of $118^{\circ} \mathrm{C}$. Calculate the rate of heat required to boil water. Also estimate the rate of evaporation of water from the kettle.

## OR

8. a) Write short notes on Black body radiation.
b) Calculate the net radiant heat exchange per m2 area for two large parallel plates at temperatures of $427^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$. (hot plate) $=0.9$ and (cold plate) $=0.6$. If a polished aluminum shield $(=0.4)$ is placed between them, find the \% reduction in the heat transfer

## UNIT-V

9. a) What is LMTD? When is the LMTD method most applicable to heat-exchanger calculations?
b) Define effectiveness of heat exchanger

## OR

10. Hot oil at $100^{\circ} \mathrm{C}$ is used to heat air in a shell-and-tube heat exchanger. The oil makes six tube passes and the air makes one shell pass; $2.0 \mathrm{~kg} / \mathrm{s}$ of air are to be heated from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. The specific heat of the oil is $2100 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$, and its flow rate is $3.0 \mathrm{~kg} / \mathrm{s}$. Calculate the area required for the heat exchanger for $\mathrm{U}=200$ $\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$
$\square$
Hall Ticket Number :

## R-19

Code: 19A36CT
III B.Tech. II Semester Supplementary Examinations April 2023

## Instrumentation and Control Systems

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

| UNIT-I | Marks | co | BL |
| :--- | :---: | :---: | :---: |
| Explain the Dynamic characteristics of measuring instruments. | 14 M | 1 | 2 |
| OR |  |  |  |
| Explain about the Generalized measurement system and its functional elements | 14 M | 1 | 2 |

2. Explain about the Generalized measurement system and its functional elements
14M 12

## UNIT-II

3. Describe the principle of operation of an lonization gauge with a neat sketch and mention its applications, merits and demerits.
14M 22

## OR

4. Explain working principle of thermocouples. State the three laws of thermocouples. Interpret their application.
UNIT-III
$\begin{array}{llll}\text { 5. Explain briefly about the different types of torsion meters. } & 14 \mathrm{M} & 3 & 2\end{array}$
OR
5. Explain the function of a dummy gauge in a strain gauge load cell
14M 32
UNIT-IV
6. Explain briefly about resistance strain gauges.
14M 42
OR
7. Describe the working principles of strain gauge bridge with sketch. Indicate their arrangements for measurement of torque on a circular shaft.

## UNIT-V

9. a) Represent the mathematical models for thermal systems with an example.
7M 52
b) Sketch and explain Mason's rule?
7M 54

## OR

10. a) Compare gain margin and phase margin
7M $5 \quad 5$
b) Represent the Mathematical models for Mechanical systems with an example

# Hall Ticket Number 

## Code: 19A56IT

## R-19

III B.Tech. II Semester Supplementary Examinations April 2023

## Artificial Intelligence <br> (Common to CE and ME)

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
Marks CO BL

1. a) State and explain Water Jug Problem with an example? $10 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 4$
b) Illustrate the four types of agents?

4M CO1 L2
2. a) What are Al Problems? 4M CO1 L1
b) Explain state space approach for solving any Al problem? 10M CO1 L2

UNIT-II
3. a) Give $A^{*}$ Algorithm with an example? What are the limitations of $A^{*}$ algorithm? $10 \mathrm{M} \quad \mathrm{CO} 2 \mathrm{~L} 1$
b) Compare and contrast DES versus BFS? 4M CO2 L4

## OR

4. a) Demonstrate constraint satisfaction problem with a suitable example. $7 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 4$
b) Compare the six search strategies in terms of the following criteria: time, space, optimal, complete.

7M CO2 L2

## UNIT-III

5. a) Explain the syntax and semantics of first order logic in detail? 7M CO3 L2
b) What is a horn clause? Explain inference with horn clause? 7M CO3 L2

OR
6. a) Write the forward chaining algorithm for first order definite clauses? 7M CO3 L2
b) Explain the resolution inference rule for first-order clauses? 7M CO3 L2

## UNIT-IV

7. a) Describe the organization of objects into categories as part of knowledge representation?

7M CO4 L1
b) Explain the planning with state space search with examples?

7M CO4 L2
8. a) Describe with examples how objects are organized into categories? 10 M CO1 L2
b) Illustrate the concept of ontology with an example $4 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 4$

## UNIT-V

9. a) Demonstrate joint probability distribution with a suitable example? 10 M CO5 L4
b) Write short notes on Fuzzy logic? 4M CO5 L2

## OR

10. a) Discuss the method for constructing belief networks.

7 M CO5 L4
b) Explain the Baye's rule and its use in uncertain knowledge and reasoning?

7M CO5 L2

## Code: 19A363T

R-19
III B.Tech. II Semester Supplementary Examinations April 2023

## Applied Thermodynamics-III

(Mechanical Engineering)

Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
*********


## UNIT-II

3. a) An air refrigerator of 10 ton capacity operates on a Bell-Coleman cycle. The temperature of air entering the compressor is $10^{\circ} \mathrm{C}$ and that of entering the expander is $32^{\circ} \mathrm{C}$. The quantity of air circulated is $50 \mathrm{~kg} / \mathrm{min}$. The compression and expansion follow the law $\mathrm{PV}^{1.3}=$ constant. Find COP of the system and the power required to run the system.

10M CO2 L3
b) What is the function of a throttle valve in vapour compression refrigeration system?

OR
4. a) Explain Bootstrap air cooling system with suitable diagram.
b) List the merits and demerits of an air refrigeration system.

## UNIT-III

5. a) With the help of neat diagram, explain the working of a Lithium bromide-water absorption refrigeration system.

10M CO3 L2
b) Illustrate the properties of ideal absorbent used in vapour absorption system. $4 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

OR
6. a) Prove the equation of maximum C.O.P of a vapour absorption system with common notations.
$8 \mathrm{M} \mathrm{CO3} \mathrm{L3}$
b) Make a comparative list between a vapour - absorption Refrigeration system and a vapour compression Refrigeration system.

6M CO3 L4

## UNIT-IV

7. a) Define Air-conditioning. Classify air-conditioning systems.

6M CO4 L1
b) The atmospheric air has a dry bulb temperature of $21^{\circ} \mathrm{C}$ and wet bulb temperature $18^{\circ} \mathrm{C}$. If the barometer reads 750 mm of Hg , determine i) partial pressure of water vapour ii) Relative humidity and iii) Dew point temperature.

8M CO4 L3
OR
8. a) Describe the working of summer air-conditioning system with a neat sketch.
b) List out the various equipment used in Air Conditioning systems and explain their functions.

## UNIT-V

9. a) Draw the 'Water to water Heat Pump' circuit and explain its working.
$7 \mathrm{M} \mathrm{CO5}$ L2
b) With the aid of simple sketch, explain the working of a centrifugal dust collector.

7M CO5 L2

## OR

10. a) Describe Lithium bromide absorption type dehumidifier system with a diagram. 7M CO5 L2
b) Illustrate the operation of any one type of dehumidifier used during different seasons of the year.
$7 \mathrm{M} \mathrm{CO5}$ L2
