\square
Hall Ticket Number :

Code: 19A56IT

R-19

III B.Tech. II Semester Supplementary Examinations Nov/Dec 2023

Artificial Intelligence

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO BL

UNIT-I

1. a) Write and explain about PEAS description with examples?
b) What are problem characteristics? Explain with examples?

OR
2. a) Discuss about the structure of Intelligence agents.
b) Design and analyze a State-space representation of the Towers of Hanoi problem?

10M CO1 L6

UNIT-II

3. a) Discuss any two search strategies that come under the heading of uninformed search?
b) Write short notes on constraint satisfaction?

OR
4. a) Define Heuristic search? What are the advantages of Heuristic search? $4 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 2$
b) Describe the heuristic search technique applied to a hill-climbing problem with an example?

10M CO2 L2

UNIT-III

5. a) Give the complete grammar of first order logic using BNF?

7M CO3 L1
b) What is the logic behind in the completeness of resolution?

7 M CO3 L2

OR

6. a) Define the semantics of propositional logic. Draw the truth tables for the Five logical connectives?
b) Show the various steps in knowledge engineering process in first order logic.

7 M CO3 L4

UNIT-IV

7. a) Discuss the basic representations for planning?

7M CO4 L4
b) What are the steps involved in knowledge engineering? Explain?

7 M CO 4 L 2
OR
8. a) Describe the planning strategy with state space search?

7M CO4 L1
b) Write short notes on mental events and mental objects?

UNIT-V
9. a) Show the use of Bayes' rule with a suitable example?

7M CO5 L5
b) Write and explain about conditional independence relations in belief networks?

OR
$\begin{array}{lllll}\text { 10. a) Illustrate prior probability and conditional probability with an example. } & & 7 \mathrm{M} & \mathrm{CO} 5 & \mathrm{~L} 4 \\ \text { b) Discuss conditional independence relations in belief networks. } & & 7 \mathrm{M} & \mathrm{CO} & \mathrm{L} 2\end{array}$

