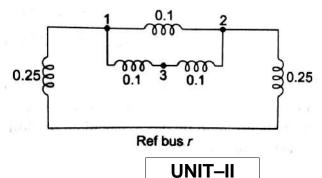
]				
Hall Ticket Number :																
Code: 20A261T													R	R-20		
III B.Tech. II S	eme	ster	Sup	pler	ner	ntary	' Exc	m	inat	tio	ns I	Nov/	Dec 20	23		
			Pow	•												
	(Ele	ectri	cal	and	Elec	tron	ics E	ing	inee	erir	ng)					
Max. Marks: 70													Time	e: 3 Hc	ours	
			_			****			_	_						
Note: 1. Question Pap				-				and	Par	t-]	B)					
2. In Part-A, ea	-							_								
3. Answer ALI	the q	luesti	ions	in P a	art-A	and	Par	·t-B								
					PAF	RT-A										
			(0	Comp	oulso	ry qı	iestio)n)								
. Answer all the follow	ving s	short	tans	swe	r qu	estic	ons		(5	X	2 :	= 10	N)		CO	BL
) Define: Oriented gra	aph o	far	netw	ork.											1	1
) State any advantage	e of C	Gaus	ss S	eide	el loa	ad fl	ow	sol	utio	n.					2	1
) Draw the phasor di	agra	m o	f ne	gati	ive	seq	Jen	ce	thre	ee	ph	ase	voltage	es of		
sequence compone	nt for	unt	bala	nce	d ph	aso	rs.						-		3	1
) Sketch the Power-a	ngle	curv	e of	[:] a s	yncl	hror	ious	m	ach	in	e.				4	1
) Write down the swir	ig eq	uatio	on.												5	1
					PAF	RТ-В										

PARI-B

Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)

Marks CO BL


UNIT-I

2. The parameters of a 3-bus system are as under, Find the bus admittance matrix using direct inspection method.

Bus Code	Impedance (pu)	Half-line Charging admittance (pu)
1-2	0.06+j0.18	j0.005
1-3	0.02+j0.06	j0.006
2-3	0.04+j0.12	j0.005
		OR

12M 1 2

3. Obtain the Bus Impedance Matrix for the network shown in Figure (all impedances are in p.u.) using Z-bus building algorithm.

12M 1 2

Explain clearly the computational procedure for load flow solution 4. using Newton-Raphson method, considering the generator reactive power limit.

12M 2 2

The load flow data for the sample power system are given below 5. (all values are in per unit). The voltage magnitude at bus 2 is to be maintained at 1.04 p.u. The maximum and minimum reactive power limits of the generator at bus 2 are 0.35 and 0.0 p.u. respectively. Determine the voltage solution of the power system at the end of first iteration using Gauss-Seidel method

Bus code	Impedance	Line c	hargin	g admitt	ance			
1–2	0.08 + j0.24		0.0					
1–3	0.02 + j0.06		0.0					
2–3	0.06 + j0.18		0.0					
Bus code	Assumed	Genera	ation		Load			
	voltages	Р	Q	Р	Q			
1	1.06 + j0.0	0.0	0.0	0	0			
2	1.0 + j0.0	0.2	0.0	0	0			
3	1.0 + j0.0	0.0	0.0	0.6	0.25	12M	2	2
		UNIT-III						

6. Write short notes on short circuit current and MVA calculation for symmetrical fault analysis. 12M

3 2

2

2

2

2

2

4

4

5

OR

A 25 MVA, 13.2 kV alternator with solidly grounded neutral has 7. a sub-transient reactance of 0.25 p.u. The negative and zero sequence reactances are 0.35 and 0.1 p.u. respectively. Determine the fault current and the line-to-line voltages at the fault when a double line-to-ground fault occurs at the terminals of an unloaded alternator. Neglect resistance. 12M 3

UNIT-IV

Discuss the methods of improving steady state stability of the 8. power system network.

OR

With the help of Power-angle curve, explain how system 9. stability can be studied? 12M

UNIT-V

Explain about determination of transient stability using equal 10. area criterion.

OR

Briefly describe the classical step by step solution of swing 11. equation. 12M 5

12M

12M

	Hall Ticket Number :														
L	Code: 20A26BT	<u>, </u>										F	R-20		
	III B.Tech. II Se		•	•							lov/D	ec 20)23		
		Electri	ver S												
	Max. Marks: 70		Carv	and		****		- i gii	10011	9)		Time	e: 3 Hc	ours	
	Note: 1. Question Pape	r consists	of tw	vo pa	arts (I	Part-	A ar	nd Pa	rt-B)						
	2. In Part-A, each	•													
	3. Answer ALL th	ie questio	ns in	Par		na P RT-A		5							
			(Co	omp	ulso			on)							
1. An	swer all the followin	g short	ansv	ver	que	stio	ns	(5 X	2 =	10M)			CO	BL
a) M	ention two drawbac	ks if the	arm	atu	re in	DC	; mc	otor	is di	scor	ntinuo	US.		CO1	L2
b) Ho	w would you define	e four qu	ladra	ant	opei	ratic	n							CO2	L2
,	t out some compar		vant	tage	es of	f cho	oppe	ers o	over	con	trolled	d recti	ifiers		
	drive applications.				_									CO3	L2
,	nat is the need of V								-					CO4	L2
e) Co	mpare and tell the	advanta	iges	of ł		ner (RT-B		e ov	er S	che	rbius	drive		CO5	L2
	Answer <i>five</i> questio	ns by cho	oosir	ng oi	ne qu	uesti	on f	rom	each	unit	(5 x 1) Marks Marks	;) CO	BL
					UNI	T_I]				ľ	viaiks	00	DL
2. a	 With relevant of operation of 1 f an expression current mode. Two independer armature & field controlling its sp the field adjuster machine parameti) armature resistii) Motor voltage at 1000 rpm. Th 	ully con for aver nt 1 pha circuits eed. Th ed such eters are tance = constar	trolle age of t e firi that 0.25	ed c ou sen he ing a ma 5 oh 703	conv t-pu ni co sepa angl axim axim 1m, i 2 V-	erte t vo arate e of um i) Fi	r fe oltag erter ely the field led	d to le u s a exite cor d cu resi	dc nde re s ed D nver irrer stan	drive r co uppl C m ter s nt flc nce=	e. Der ntinuc lying notor, upply ows. 7 147of e=45N	the for ing he nm, J-m	6M	CO1	L2
	 The friction and current of the field to make the arm of the armature of the armature	d winda d & arm ature & converter ed torqu hree pha	ge ature field e ch ase	loss e cir cur hara fully	res rent OI octer	are s wh s co R istic	neg nich ontin s of led	glect are uou a [conv	ted. suffi s. ii) D.C verte	Find cien Del serie er	d i) T t enou lay an	The ugh igle		CO1 CO1	
k) A separately ex- supplied from 3- three phase su- resistance of m added to main power at rated s to $\alpha = 30^{\circ}$, calcula torque is consta	phase h upply is otor Ra tain cor speed w ate the s	nalf rat = 0 ntinu hen spee	cont ted 0.2 ious $\alpha = 0$ ed c	trolle at co co o°. If of th	ed 220 and ondu f the ie o	bri V suf octio firi pera	dge , 5(ficie n. I ng a atior	re D H nt ir t de angle n if:	ectifie z. A nduc elive e is (i) T	er. 7 Armat stance rs ra retarc The lo	The ure is ted ded pad	6M		L3

Code:	20A26BT
-------	---------

UNIT-II Explain how four quadrant operation is achieved by dual 4. converter with 3 phase full wave configuration for DC separately excited dc motor 12M CO2 L2 OR 5. a) Draw speed-torque characteristic for regenerative braking operation of a D.C shunt motor and explain the operation 6M CO2 L2 b) Draw the block diagram and explain the closed loop operation of DC motor. 6M CO2 L2 UNIT-III 6. Explain the operation of four guadrant chopper fed to the DC series motor and also draw the current & voltage waveforms for continuous current operation. 12M CO3 L2 OR 7. a) A 230V, 24A, 1000 rpm separately excited DC motor having an armature resistance of 20hm is controlled by a chopper. The chopping frequency is 500Hz and the input voltage is 230V. Calculate the duty ratio for a motor torque 1.2 times rated torque at 500 rpm. 6M CO3 L3 b) Explain the principle of closed loop control of chopper fed DC drive using suitable block diagram. 6M CO3 L2 **UNIT-IV** 8. a) Mention various methods of speed control of an I.M. Explain stator frequency control with necessary characteristic curves 6M CO4 L2 b) Explain the operation of voltage source inverter in 180 degrees conduction mode. 6M CO4 L2 OR 9. a) Describe the operation of AC voltage controller fed three phase induction motor with neat circuit diagram and waveforms 6M CO4 L2 b) For variable frequency control of induction motor explain for the speeds below base speed V/F ratio is maintained constant. Why? 6M CO4 L2 UNIT-V 10. Describe self control and separate control of Synchronous motor in detail. 12M CO5 L3 OR 11. a) Explain the operation of load commutated CSI fed synchronous 6M CO5 L2 motor b) Draw the speed torque characteristics of a rotor resistance controlled induction motor and explain the effect of rotor resistance variation. 6M CO5 L3

*** End ***

	На	all Ticket Number :		
C	Cod	le: 20A263T		
		III B.Tech. II Semester Supplementary Examinations Nov/Dec 2023		
		Power System Operation and Control (Electrical and Electronics Engineering)		
٨	Na>	K. Marks: 70 Time: 3 H	ours	
ľ	Note	 ********* e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 		
		PART-A		
1 An	<u></u>	(Compulsory question) (Compulsory question) $(5 \times 2 - 10M)$	СО	BL
		er all the following short answer questions $(5 \times 2 = 10M)$		
,		ne the incremental transmission loss and give its significance	1	1
,		t are the advantages of operation of hydro thermal combinations?	2	1
		t is meant by tie-line bias control? hasize the need of reactive power compensation.	3 ₄	1
,	•	ne Market Power.	4	3
e) D	CIII	PART-B	5	1
	An	iswer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Mark	s)	
		Marks	s CO	BL
		UNIT–I		
2.	a)	Derive the expression for optimum generation allocation	_	
		without transmission line losses. 6N	I 1	1
	b)	A power system consists of two 200MW units whose input		
		cost data are represented by the equations: $C_1 = 0.03P_1^2 + 21P_1 + 750 \text{ Rs/hour},$		
		$C_1 = 0.05P_1^2 + 21P_1 + 750$ Rs/hour. If the total received power		
		$P_R = 350$ MW, determine the load division between the units		
		for the most economic operation. 6N	I 1	3
		OR		
3.	a)	How are B-coefficients evaluated for transmission lines of the		
•		power system? 6N	I 1	2
	b)	Two power plants are connected together by a transmission line and load is connected at plant 2. When 150 MW are transmitted from plant-1, the transmission loss is 10MW. The cost characteristics of two plants are $C_1 = 0.05 P_{G1}^2 + 13 P_{G1} Rs/h$		
		$C_1 = 0.05 P_{G1}^2 + 13 P_{G1}^2 Rs/h$		
		Find the optimum generation for λ =30. 6N	I 1	3
			• 1	3

		Code	e: 20A263	3Т	
		UNIT–II			
4.	a)	Explain the hydrothermal scheduling problem.	6M	2	1
	b)	Explain the problem of scheduling hydrothermal power			
		plants. Explain the constraints in the problem.	6M	2	1
		OR			
5.		Derive mathematical formulation for short term hydro thermal			
		scheduling.	12M	2	2
		UNIT–III			
6.		Explain clearly about proportional plus integral LFC with a			
		block diagram and prove that its change in frequency is zero.	12M	3	1
		OR			
7.		Derive the expression for change in static error frequency			
		and tie line power in an identical two area LFC system with			
		block diagram.	12M	3	2
		UNIT–IV			
8.	a)	Compare series, shunt compensations with their advantages			
		and disadvantages.	6M	4	3
	b)	What is the importance of load compensation? What are the			_
		specifications of load compensation equipment?	6M	4	2
-		OR			
9.	a)				_
		lines.	6M	4	3
	b)	Compare the different types of compensating equipment for			
		transmission systems.	6M	4	3
4.0	、	UNIT-V			
10.		What are the major factor motivating the restructuring.	6M	5	2
	b)	Explain Transmission Pricing and Congestion Pricing.	6M	5	1
		OR			
11.	a)	Explain Electricity Price Volatility Electricity Price Indexes.	6M	5	1
	b)	Discuss about Short-time Price Forecasting.	6M	5	3
		*** End ***			

	Ha	I Ticket Number :			
	Cor	le: 20A26DT	R-20		
		III B.Tech. II Semester Supplementary Examinations Nov/De	эс 2023		
		Solar and Wind Energy Systems			
		(Electrical and Electronics Engineering)	Time e v O I		
	Ma	<. Marks: 70 ********	Time: 3 H	OUIS	
	Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two marks .			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u> (Compulsory question)			
1Δ	nswa	er all the following short answer questions $(5 \times 2 = 10M)$		со	BL
		is the difference between renewable and non renewable energy source of	enerav?		L1
		is solar collector? what are different types of solar collectors are used			L1
,		ne disadvantages of wind power generation.			L1
,		down the various types of wind power plants			L1
		on various operating modes of Grid			L1
,		PART-B			
	Aı	nswer <i>five</i> questions by choosing one question from each unit (5 x 12	2 = 60 Mark	(s)	
			Marks	CO	BL
		UNIT–I			
2.	a)	How to estimate solar radiation?	6M	CO1	L2
	b)	Describe solar pond with neat sketch.	6M	CO1	L2
2		OR Mantian the employed and of new concentration type collectors	014	004	
3.		Mention the applications of non-concentrating type collectors.	6M		
	b)	What are the limitations of conventional energy sources?	6M	CO2	L2
4.	a)	Write down advantages of solar PV system.	6M	CO2	L2
	b)	Draw I/V & P? V characteristics of Solar PV cells.	6M		
	,	OR			
5.	a)	Explain advantages and disadvantages of solar photo voltaic system.	6M	CO2	L2
	b)	Explain types of PV Solar cells and draw characteristics of it.	6M	CO2	L2
		UNIT–III			
6.	,	Discuss the wind power statistics in India and global scenario?	6M		
	b)	Mention the advantages and disadvantages of wind energy?	6M	CO3	L2
7.	2)	OR What is Betz Model?	6M	CO3	L2
7.	a) b)	What are the applications of wind energy?	6M		
	0)	UNIT-IV	OW	000	LZ
8.		Explain fixed and variable speed wind turbines with neat diagram	12M	CO4	L2
		OR			
9.		Explain Doubly-Fed Induction Generators and their characteristics?	12M	CO4	L2
		UNIT–V			
10.	a)	Explain the Voltage and Frequency operating limits of Wind farms for Fa			
		ride-through Capability.	6M		
	b)	Explain 'Grid code' and explain its technical requirements.	6M	CO4	- L2
11.		OR Explain the Hybrid and isolated Grid Integration operation of Solar PV a	and		
		wind Systems.	12M	CO4	L2
		-			

т

T

T

~		R-20	
Co	de: 20A262T]
	III B.Tech. II Semester Supplementary Examinations Nov/	Dec 2023	
	Microprocessors and Microcontrollers (Electrical and Electronics Engineering)		
Мс	x. Marks: 70	Time: 3 H	lours
	******		10010
Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks .		
	3. Answer ALL the questions in Part-A and Part-B		
	PART-A		
	(Compulsory question)		
	Answer all the following short answer questions $(5 \times 2 = 10M)$	CO	BL
,	List different segment registers in 8086	CO1	L1
,	Describe memory mapped I/O		L2
	Show the data transfer format in asynchronous communication		L1 L1
,	Name the functions of port1 in 8051 List the features of ARM	CO4 CO5	LI L1
e)	PART-B	005	
Α	nswer <i>five</i> questions by choosing one question from each unit (5 x	: 12 = 60 Marl	ks)
		Marks	-
	UNIT–I		
	Explain the architecture of 8086 processor with neat sketch	12M	1
	OR		
a)	Draw the memory read cycle diagram in Minimum mode	6M	1
b)	Develop an ALP in 8086 to sort 10 words of data	6M	1
	UNIT-II	014	0
a) b)	Explain DMA operation	8M 4M	2
D)	Differentiate I/O mapped and memory Mapped methods OR	41/1	2
	Explain the architecture of 8259 with architecture diagram	12M	2
	UNIT–III		
a)	Differentiate synchronous and asynchronous communication	4M	3
b)	Discuss I2C protocol	8M	3
	OR		
a)	List the specifications of Blue-tooth	4M	3
b)	Discuss SPI protocol	8M	3
	UNIT-IV		
	Discuss the serial communication module in 8051	12M	4
a)	OR Discuss any four data transfer instructions in 8051	8M	4
b)	Develop a program to multiply two bytes in 8051	4M	4
0)			•
a)	List different applications of ARM	4M	5
b)	Explain the architecture of ARM with neat sketch	8M	5
-,	OR		-
a)	List different pins and their functions in ARDUINO	8M	5
	Illustrate the application of ADC	4M	5