						D 11 / D 12	
Hall Ticket Number :							

Code: 1G673

Max. Marks: 70

R-11 / R-13

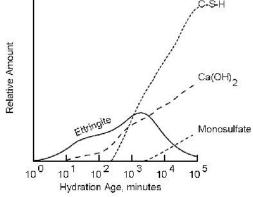
IV B.Tech. I Semester Supplementary Examinations Nov/Dec 2017

Bridge Engineering

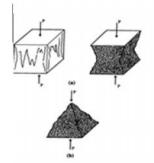
(Civil Engineering)

Time: 3 Hours

4M


14M

14M


Answer any **five** questions All Questions carry equal marks (14 Marks each)

- Explain about the investigations carried out while planning and design of major bridges. 10M 1. a)
 - b) Briefly discuss about the seismic forces on bridges.
- 2. Design a reinforced concrete box culvert with inside dimensions of 3 m height and 4.5 width. The box culvert has to carry a superimposed dead load of 10 kN/m² and a live load of 50 kN/m². The density of the earth is 18 kN/m². Angle of repose of soil is 300. Adopt M-20 grade concrete and Fe-415 grade tor steel. Sketch the details of reinforcements in the box culvert. 14M
- 3. Design a deck slab for the following particulars. Clear Span=5.5 m; Width of the foot path 1 m on either side; Wearing coat = 100 mm; Loading = IRC Class AA; Materials= M35 concrete and Fe 415 Steel 14M
- A T-beam bridge has to be provided across a channel having the following data. Design 4. the bridge deck (up to Longitudinal girders). Flood discharge= 30 m³/s; Bed width = 12 m; side slope = 1:1; Bed level = 50 m; HFL = 51.25 m; Maximum allowable afflux=1.5 m; Hard rock available at 48 m, Road formation level = 54 m; Road = NH (2 lanes); Foot path = 1 m wide on either side; Loading= IRC Class AA; Materials= M40 & Fe 415; No. of longitudinal girders = 3 14M
- 5. Using the following particulars to design a plate girder bridge for a broad gauge track. Span= 20m; Top level of the railway embankment=115m; Bed level of the stream = 100m; Ground level suitable for foundation = 98m; stream bund top |eve| = 101.50m.
- 6. What are the different types of shear connectors used in the composite bridges? Briefly explain about them with the help of neat sketches.
- 7. Design a steel rocker bearing for transmitting a vertical reaction of 1000 kN and a horizontal reaction of 100 kN at the support of a bridge girder, assuming the following permissible stresses according to IRC:83-1982. Permissible compressive stress in concrete bed block = 4 N/mm² Permissible bending stress in steel plate = 160 N/mm² Permissible bearing stress in steel plate = 185 N/mm² Permissible shear stress in steel = 105 N/mm² Sketch the typical details of rocker bearing. 14M
- 8. a) Draw the sketch of abutment showing typical details along with its structural components. 7M
 - 7M b) Briefly explain about the various forces acting on the piers and abutments.

Hall Ticket Number :										1		
Code: 1G674		<u> </u>				<u> </u>			<u>]</u>]		R-11 / R	-13
IV B.Tech. I Se	mostor	Sup	olor	nont	an	Eve	imr	oati	onc	Nov	$\sqrt{D_{D_{D}}} \sim 201$	7
IV D.IECH.ISE		• •							OUS		TDec 201	/
				ete Te			•	/				
		(Civil	Engi	nee	ering)					
Max. Marks: 70											Time: 3 I	Hours
				any fi		•						
A	ll Questic	ns cc	arry e	equal		ks (1	14 M	arks	eacl	h)		
1. a) Draw the sche	ematic de	oictio	n of t	he pro	oces	s of	man	ufac	turing	, cem	nent.	4M
b) Mention the ox	xide and o	comp	ounc	l comp	posit	ions	of c	emei	nt.			3M
c) Why does flas	h set occ	ur in d	ceme	ent hy	drati	on a	nd h	ow c	ould	you i	rectify it?	3M
d) Analyse and d	liscuss th	e figu	re sł	nown k	belo	w.						
	Amount			7	/	,C-S-F	4					

2.	a)	Mention any two important characteristics of aggregates and their influence on	
		concrete.	4M
	b)	What is bulking of sand? Mention its influence on concrete mix.	ЗM
	c)	Why is grading of aggregate important with respect to the properties of	
		concrete?	4M
	d)	Why is the use of sea water not recommended in concrete making?	3M
3.	a)	Discuss the effects of using fly ash, silica fume, slag, rice husk ash and	
		metakaoline on fresh concrete properties.	8M
	b)	How would you obtain a workable concrete mix? Explain.	6M
4.	a)	Discuss the stress-strain curve for concrete with suitable sketches.	5M
	b)	Why capping of cylindrical concrete specimen is needed? Mention the materials used for capping.	4M
	c)	Discuss any two factors affecting the measured compressive strength of concrete.	

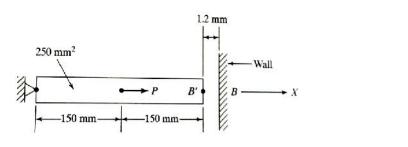
4M

5.		Discuss any seven factors affecting the measured compressive strength of concrete.	14M
6.	a)	What are the various factors affecting Creep and shrinkage of concrete?	7M
	b)	How does strength of concrete influence the modulus of elasticity of concrete?	7M
7.		Assume that you are a Concrete Technologist working with L & T. The company got a contract to build world tallest building in Mumbai. You got an assignment to design the concrete using any standard codes for the following specifications. 30 % of cement should be replaced by Slag as desired by the company.	
		Grade : M30	
		Exposure Condition : Extreme	
		Slump @ Site : 150	
		Nominal Maximum Size Aggregate : 20mm – Angular Shaped	
		Fine Aggregate : M- Sand	
		Admixture HRWR : with around 20% Water Reducing Capacity	
		Cement : 53 Grade OPC	
		Specific gravity of 20 mm : 2.78	
		Specific gravity of 12.5 mm : 2.75	
		Specific gravity of M-sand : 2.60	
		Specific gravity of Slag: 2.1	
		Water absorption of M-sand : 4%	14M
8.	a)	What is the principal advantage of using fiber-reinforced concrete? Explain how the concrete acquires this property.	6M
	b)	Compare the technologies of producing latex- modified concrete and polymer- impregnated concrete.	4M
	c)	Mention the circumstances in which you will recommend the following	
		(i) Self compacting Concrete, (ii) Polymer Concrete, (iii) Fiber reinforced concrete (iv) Light weight concrete	4M

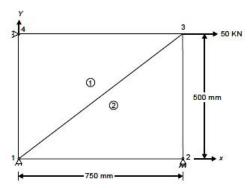
Hall Ti	cket Number :									1
Code:	16670								R-1	1 / R-13
	/ B.Tech. I Ser	nester Su	pplem	nenta	rv Exc	amii	nati	ons N	lov/Dec	2017
	Construc		hnolog		d Pro	ojec				
Max. I	Marks: 70			C					Tin	ne: 3 Hours
	All	A Questions		,	arks ('		arks	each)	
1. a)	Explain safety	guidelines i	n constru	uction a	activiti	es?				7M
b)	Describe the co	onstruction	records?	?						7M
2.	Discuss the role	e of Infrastr	ucture d	levelop	ment i	n Inc	dian B	Econo	my?	14M
3. a)	Explain earthwo	ork excavat	ion?							5M
b)	Discuss the gro	ound water	control r	nethod	s?					9M
4. a)	Explain various	equipment	used fo	or blasti	ng and	d the	ir sel	lection	o criteria?	8M
b)	Discuss enviror	nmental effe	ects of b	lasting	?					6M
5. a)	Discuss the sta	iges in deve	lopmen	t of bar	· chart	?				7M
b)	Discuss the sho	ortcomings	of bar cl	harts a	nd the	rem	edial	meas	sures?	7M
6. a)	Explain forward	l, backward	and cor	mbined	l plann	ing?				7M
b)	Discuss event of	oriented dia	grams a	and acti	ivity or	iente	ed dia	agram	s?	7M
7.	The details of network diagra				•	•		•		

and calculate a) Expected time of completion of each activity,
 b) Earliest expected time for each event, c) Latest allowable occurrence time for each event.

Activity	Optimistic Time	Most likely Time	Pessimistic Time
1 - 2	6	9	`8
1 - 3	5	8	17
2 - 4	4	7	22
3 - 4	4	7	16
2 - 6	4	7	10
3 - 7	2	5	8
4 - 5	4	10	22
5 - 6	0	0	0
5 - 7	0	0	0
6 - 8	3	5	13
7 - 9	4	9	20
8 - 10	5	8	17
9 - 10	4	7	16
5 - 10	6	11	20


14M

8. A project consists of nine activities and the details about them are given below in the table. Draw the project network; identify critical path and determine-duration of the project. Also determine total float, free float and independent float for each activity.


Activity	Predecessor	Duration (weeks)
A	-	3
В	-	4
С	-	14
D	В	3
E	A	5
F	В	6
G	В	4
Н	C,D	1
I	G,H	1

14M

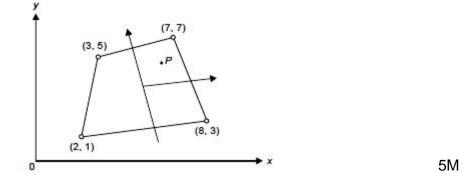
Hall Ti	cket Number :									г			
Code:	16672						J		<u> </u>		R-1	1 / R-	13
	/ B.Tech. I Ser	mester	Supr	olem	entar	v Exc	amii	nati	ons	Nov	/Dec	2017	
		e Elen				-							
			(Civil	Engine	ering	g)	•		•			
Max.	Marks: 70										Tim	ie: 3 H	ours
	Al	l Questic			ny five qual ma	•		arks	eac	h)			
1. a)	Explain the co	ncepts of	FEM	and o	outline t	he pr	oced	ure.					7M
b)	Discuss the a method (FDM)	•	es an	id dis	advanta	ages	of F	ΈM	over	Finite	e diffe	rence	7M
2. a)	Give constitutiv	ve laws f	or thre	ee din	nension	al pro	blem	ns of					
	(i) Orthotropic	materials	6										
	(ii) Isotropic ma	aterials.											7M
b)	Derive strain d	isplacem	nent re	elation	ship ma	atrix f	or ar	ı Axi-	symr	netric	eleme	ent.	7M
3. a)	What is shape	function	? Wha	at is cl	haracte	ristic	ofas	shap	e fun	ction	?		4M
b)	In Fig.1, a lo displacement f N/mm2.												

4. Find the nodal displacements and element stresses in the propped beam shown in Fig. 2. Idealize the beam into two CST elements as shown in the figure. Assume plane stress condition. Take $\mu = 0.25$, E = 2 × 105 N/mm2, Thickness = 15mm.

14M

10M

10M


- 5. a) Generate the element stiffness and nodal load matrices for 3-node triangular element.
 - b) Determine the shape functions for the Constant Strain Triangle (CST). Use polynomial functions.
 4M

9M

Page 2 of 2

Code: 1G672

- a) Explain the about subparametric, superparametric and isoparametric elements in finite element analysis
 6M
 - b) State and Prove convergence criteria for isoparametric elements. 8M
- Derive the finite element formulation of 4- noded iso-parametric axi-symmetric element.
 14M
- 8. a) Determine the Cartesian coordinate of the point P(= 0.5, = 0.6) shown in Fig

b) Evaluate the integral: $I = \int_{-2}^{3} (x^2 + 11x - 32) dx$ using one and two point gauss

Quadrature. Compare with the exact solution for accuracy.

	На	II Ticket Number :	
	Co	de: 1G671 R-11 / R-13	
		IV B.Tech. I Semester Supplementary Examinations Nov/Dec 2017	
		Geotechnical Engineering-II	
	M	(Civil Engineering) ax. Marks: 70 Time: 3 Hours	
		Answer any five questions All Questions carry equal marks (14 Marks each) ********	
1.	a)	Describe with a neat sketch how will you carry out the wash boring method of soil exploration. What are its merits and demerits?	7M
	b)	Compute the area ratio of a sampler with inside diameter 70 mm and thickness 2 mm comment	7M
2.	a)	What is meant by slope factor of safety? Explain Taylor's stability number and how it is modified for different stability conditions of canal slope.	7M
	b)	An embankment is made of soil having $c' = 10 \text{ kN/m}^2$, $=23^\circ \text{ and } = 19 \text{ kN/m}^3$. The embankment is of 9 m height and has a slope of 30° . The average pore pressure ratio may be taken as 0.30 for the condition of steady seepage. Using the Bishop's simplified method	
		of slices, determine the factor of safety against shear failure?	7M
3.	a)	Explain about Coulomb's earth pressure theory?	7M
	b)	Explain the Culmann's graphical method.	7M
4.	a)	What are the types of retaining walls and explain with schematic diagrams?	7M
	b)	Explain in-detail about design process of retaining walls?	7M
5.	a)	Derive the Terzaghi's bearing capacity equation for shallow foundations?	7M
	b)	Compute the safe bearing capacity of a continuous footing 1.5 m wide, at a depth of 1.5 m, in a soil with = 18 kN/m3, c = 18 kN/m2, and = 25°. Terzaghi's factors of = 25° are Nc=25, Nq=12.5, and N = 10. What is the safe load per metre run if the factor of safety is 3?	7M
6.	a)	Describe the procedure to conduct the plate load test with a sketch and state its limitations	7M
	b)	A 1.8 m square column is founded at a depth of 1.8 m in sand, for which the corrected N-value is 24. The water table is at a depth of 2.7 m. Determine the net allowable bearing pressure for a permissible settlement of 40 mm and a factor of safety of 3 against shear	
7	c)	failure	7M 7M
7.	a) b)	Explain at least two dynamic formulae of piles.	7M
	b)	A square group of 9 piles was driven into soft clay extending to a large depth. The diameter and length of the piles were 30 cm and 9 m respectively. If the	
		Unconfined compression strength of the clay is 90 kN/ m^2 , and the pile spacing is 90 cm centre to centre, what is the capacity of the group? Assume a factor of safety of 2.5 and adhesion factor of 0.75	7M
8.	a)	Explain with neat sketch different components of wells and their functions.	7M
	b)	Explain with neat sketches different types of caissons based on their method of construction	7M
	,		