Hall Ticket Number :												
----------------------	--	--	--	--	--	--	--	--	--	--	--	--

Code : 1G371

Max. Marks: 70

R-11

IV B.Tech. I Semester Supplementary Examinations May 2016 Optical Communications

(Electronics & Communication Engineering)

Time: 03 Hours

Answer any five questions All Questions carry equal marks (14 Marks each)

- 1. a) What are the major problems encountered in the early development of the optical communication for the practical use? Explain.
 - b) Differentiate between step index and graded index fiber.
- 2. a) Explain about Modified Chemical Vapour Deposition Process.
 - b) A graded index fiber with a parabolic refractive index profile core has a refractive index at the core axis of 1.5 and a relative index difference of 1%. Estimate the maximum possible core diameter which allows single-mode operation at a wavelength of 1.3 μm.
- 3. a) Give short notes on
 - i) Fiber connectors
 - ii) Optical isolators and circulators.
 - b) Discuss about Inter model Dispersion in Optical fibers.
- 4. a) Explain in detail about single mode LASERs.
 - b) Discuss LED Structures with neat sketches.
- 5. a) Explain in brief about various Fiber Splicing techniques.
 - b) Discuss in brief about Fiber to Fiber Joints concept with required diagrams.
- 6. a) Discuss about Photo Detector response time.
 - b) Give a comparative analysis of various Photodiodes.
- 7. Discuss in detail about Point-to-Point links in Digital transmission system.
- 8. a) Write short notes on Passive optical couplers.
 - b) Write short notes on Tunable light Sources.

Hall Ticket Num	ber :											г				
Code : 1G372			I		I	<u>ı ı</u>			<u>I</u>	_!				R-11		
IV B.Tech. I Semester Supplementary Examinations May 2016 Digital Signal Processing (Common to EEE & ECE) Max. Marks: 70 Time: 03 Hours Answer any five questions																
	All Qu	estions	carry	•	al ma *****	arks (*	14 N	larks	s eac	ch)						
1. a) Investig	ate the cau	sality a	nd stal			e follo	wing	, sys	tems	6.						
$\mathbf{i}\mathbf{)}h(n) =$	i) $h(n) = (2)^n u(n-1);$ ii) $h(n) = (0.5)^{ n }$											6M				
b) Comput	b) Compute the convolution sum $y(n) = x(n) * h(n)$															
	$x(n) = \left(\frac{1}{2}\right)$	/				-										8M
2. a) If $F[x(n)]$	$n)] = X(e^{jw})$	then, p	orove t	hat F	[nx(r	i)] = j	$\frac{d}{dw}$	$X(e^{j})$	^w).							7M
,	five points 5-j0.5, 0, 0		•					•			are					7M
,	,									0M						
b) What is	b) What is in-place algorithm and what is the advantage of this algorithm? 4										4M					
,	he parallel			the t	ransf	fer fur	nctio	n H(:	z) giv	ver	belo	SW				
H(Z) =	$\frac{8z^3 - 4z^2 + (z - \frac{1}{4})(z^2 $	$\frac{11z-2}{z+\frac{1}{2}}.$														7M
	the linear p								puls	e r	espo	onse	Ð.			
h(n) = u	$(n) + \frac{1}{4} u(n)$	$-1) - \frac{1}{8}u$	I (<i>n</i> −2	$+\frac{1}{4}u$	J(n−	-3)+u	(<i>n</i> -	4).								7M
5. Given <i>I</i>	$H_a(s) = \frac{1}{(s^2)}$	$\frac{16(s+1)}{16(s+5)}$	$\frac{2}{(s+3)}$. Fin	d H(z) usii	ng ir	npuls	se inv	var	iant 1	trar	sform	nation.		
Assume	T=0.2 sec.														1	4M
6. A low pa	ass filter ha	s the de	esired	frequ	ency	resp	onse	;								
$W_R(e^{jw})$	$=H_d(w)=$	$\begin{cases} e^{-j3w}, \\ 0, \\ \frac{j}{2} \end{cases}$	$0 < w + \frac{f}{2} < w $	$< rac{f}{2} \ . < f$												
Determi	ne h(n) bas	sed on f	requer	ncy sa	ampl	ing te	chni	que.	Take	eΝ	l=7.				1	4M
they are	at the up-s co-prime.				•		-					com	nmuta	ation if		7M
<i>,</i> .	the ploy ph		•				filter	with	exa	mp	le.					7M
8. Write sh	ort notes o	n spect	ral trar		natio **	ns.									1	4M

Hall Tic	ket Number :													F			
Code : 1	G373	I	I	1	<u>.</u>	<u> </u>	<u> </u>	<u> </u>		I	I	_!			R	R-11	
IV B.Tech. I Semester Supplementary Examinations May 2016 Digital Design Through Verilog HDL (Electronics & Communication Engineering)																	
Max. Marks: 70 Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each) *********																	
1. a) b)	Write about i) Concurre ii) Simulatio iii) Synthes iv) Function Explain Module	on is nal ve			diag	Irams	s and	lexa	mple	s						8N 6N	
2.	Explain about examples.	t var	ious	lexi	cal t	oker	ns ar	vailal	ole i	n Vo	eriloç	g '	with	รเ	iitable	14N	Λ
3.	Write Verilog c program with r			•••										st k	bench	14N	1
4. a) b)	Write Verilog o Write various o						•	r with	nea	t blo	ck dia	ag	rams			10N 4N	
5.	Write Verilog on neat circuit dia								-				-	jat	e with	14N	1
6. a) b)	Explain Moore Write Verilog c								•		macl	hin	e FS	SM.		6N 8N	
7. a) b)	Explain about Explain about						U									7N 7N	
8. a) b)	Design UART Write about St		-	•	HDL											8N 6N	

Hall Tic	ket Number :												
Code : 1	R-1												R-11
IV B.Tech. I Semester Supplementary Examinations May 2016 Radar Engineering (Electronics & Communication Engineering)													
Max. Marks: 70 Answer any five questions All Questions carry equal marks (14 Marks each)												ours	

1. a)												7M	
b)	Draw the block of	·		•			•						
2. a)	Explain how signals are detected in the presence of noise and obtain the radar equation as a function of minimum detectable signal to noise ratio.										r 10M		
b)	Describe the eff range of radar.	fect of pu	lse re	petitic	on fre	eque	ency (on th	e esti	imate	ed unam	biguous	6 4M
3. a)	With the help Doppler radar in					•		•		ope	ration of	f a CW	/ 5M
b)	Calculate the Doppler frequency of stationary CW radar transmitting at 6 MHz frequency when a moving target approaches the radar with a radial velocity of 100 Km/hour.												
c)	List the limitatio			ar.									4M
4. a)	List out the pos FM-CW altimet		rors fo	or me	easu	rem	ent o	f alti	tudes	aco	curately	using a	a 7M
b)	Discuss the rest while mentionin				•	-	-		-		-		r 7M
5. a)	What is a delay the frequency r							•		nd sj	beeds ba	ased or	n 7M
b)	Discuss the fac	ctors limit	ing th	e per	form	nanc	e of a	an M	TI sy	stem	۱.		7M
6. a)	With the help of technique in a t				•	am,	sequ	uenti	al lob	oing	type of t	racking) 4M
b)	Compare and techniques.	contrast	coni	cal s	can	and	seo	quen	tial lo	obing	g type t	racking) 4M
c)	Describe the p with the pattern		•	•		novii	ng ta	rget	prior	to t	racking	it along) 6M
7. a)	Define noise fig	gure and	equiv	alent	nois	se te	mpe	ratur	e of a	a rad	ar receiv	/er.	7M
b)	A radar receive equivalent nois receiver and the	se resista	ance	of 30) ohi	ms.	Calc	ulate	the	nois	se figure		
8. a)	Describe briefly	various vi	sual di	isplay	s to v	view	rada	echo	o sign	als ir	n radar sy	/stems.	7M
b)	Explain and dis	tinguish	betwe	en th	ne br	ancl	n-typ	e an	d bala	ance	d duple	xers.	7M

Hall Ticket Number :																
Coc	le : ′	1G478	II		1		1		1				1		R	-11
	IV B.Tech. I Semester Supplementary Examinations May 2016 <i>Computer Networks</i> (Electronics & Communication Engineering)															
ľ	Max.	Marks: 70	(0011						-		'y /	-	Time:	03 Ho	urs
							any		•							
		A	ll Que	estic	ons c	arry	equa	ai ma *****	irks (14 N	/larks	sead	n)			
1.	a)	Distinguish between connection oriented and connection less services with an example										n 7M				
	b)	Explain the significations of VSAT and Iridium in satellite communication											7M			
2.	a)	Explain one bit sliding window protocol for normal and abnormal cases											8M			
<u> </u>	с, b)	•		•		•									eck bits	
		Hamming code is used for 16 bit message transmission. How many check bits are needed to ensure that the receiver can detect and correct single bit errors? Show the bit pattern transmitted in the message 1101001100110101.														
3.	a)	Describe the basic problems in wireless communication and explain MACA and MACAW										10M				
	b)	Draw the Mano	cheste	er e	ncodi	ng fo	or the	e bit s	strea	m: 0	0011	1010)1.			4M
4.	a)	What is flooding? Describe Bellman-Ford routing algorithm with suitable network scenario example and routing table.								10M						
	b)	List the two m method	ajor o	diffe	rence	es be	etwee	en th	ie wa	arnin	g bit	met	hod	and th	ne RED) 4M
5.	a)	Distinguish RA	RP, E	300	DTP,	and	DHC	P wit	h res	spect	to th	ne int	erne	twork		7M
	b)	What is three b	bears	pro	blem	? Ex	plain	the l	basic	con	cept	of Cl	DR			7M
6.	a)	What is Real- structure of RT		Tra	Inspo	ort P	rotoc	ol?	Write	e the	e fun	ctior	ality	and	heade	- 7M
	b)	Write Nagle's a it uses on cong	•				the c	disad	vant	ages	of N	lagle	's al	gorithi	m wher	7M
7.	a)	What is the sig DNS Name Sp		ance	e of th	ne Do	omai	n Na	ming	l Sys	tem?	? Wri	te a	short	note or	7M
	b)	How does the	user (get t	he e	mails	s fron	n the	ISP	's me	essag	je tra	Insfe	er ager	nt?	7M
8.	a)	Alice wants to communicate with Bob, using public-key cryptography. She establishes a connection to someone she hopes is Bob. She asks him for his public key and he sends it to her in plain text along with an X.509 certificate signed by the root CA. Alice already has the public key of the root CA. What steps does Alice carry out to verify that she is talking to Bob? Assume that Bob does not care										5 1 5				
	LX	who he is talkin	ig to	f	I					- I-				م ما د		7M

b) Differentiate Cipher feedback mode and Cipher Block Chaining Mode 7M