Hall Ticket Number :												
----------------------	--	--	--	--	--	--	--	--	--	--	--	--

Code: 1G571

IV B.Tech. I Semester Regular & Supplementary Examinations Nov 2016

Operations Research

(Mechanical Engineering)

Max. Marks: 70

Answer any five questions

All Questions carry equal marks (14 Marks each)

1. A company that operates 10 hours a day manufactures each of two products on three sequential processes. Determine the optimal product mix. The following table summarizes the data of the problem:

	Min	Unit Profit				
Product	Process	Process	Process	(Rs.)		
	1	2	3			
1	10	6	8	20		
2	5	20	10	30		

2. DP auto has three plants in Bangalore, Hyderabad and Chennai, and two major distribution centers in Nagpur and Vizag. The capacities of the three plants during the next quarter are 1000, 1500, and 1200 cars. The quarterly demand at the two distribution centers are 2300 and 1400 cars. The transportation cost per car (in Rupees) on different routes between the plants and the distribution centers are given below. Design an optimum transportation schedule.

	Vizag	Nagpur				
Bangalore	80	215				
Hyderabad	100	108				
Chennai	102	68				

3. Solve by B&B algorithm:

Minimize: $z = 5x_1 + 4x_2$ Subject to: $3x_1 + 2x_2 = 5$ $2x_1 + 3x_2 = 7$ $x_1, x_2 = 0$ and integer

14M

4M

10M

14M

- 4. a) Define Saddle point and minimax criterion
 - b) Solve the following game:

	B1	B2	B3
A1	3	6	1
A2	5	2	3
A3	4	2	-5

14M

R-11/R-13

Time: 3 Hours

5.	a) b)	 Give a classification of queuing models with examples Workers come to a tool store room to enquire about the special tools required by them. The average time between the arrivals is 60 seconds and the arrivals are distributed in Poisson fashion. The average service time is 40 seconds. Determine (i) Average queue length (ii) Average length of non-empty queue. (iii) Average number of workers in the system including the workers being attended (iv) Mean waiting time of an arrival 	4M								
		(v) Average waiting time of an arrival (workers) who waits	10M								
6.	a) b)	Derive an expression for basic deterministic EOQ model. McBurger orders ground meat at the start of each week to cover the week's demand of 300 kg. The fixed cost per order is Rs.20. It costs about Rs.0.03 per kg per day to refrigerate the meat. Determine the optimum inventory level and optimum inventory cost/week of the policy.	7M 7M								
7.		Solve by DP the following LPP: Maximize: $z = 4x_1 + 14x_2$ Subject to: $2x_1 + 7x_2 = 21$ $7x_1 + 2x_2 = 21$ $x_1, x_2 = 0$	14M								
8.	a) b)										

Hall Tie	II Ticket Number :														
Code: 1	G572]	R -1	11 /	R13
IV B.Tech. I Semester Regular & Supplementary Examinations Nov 2016															
Automobile Engineering															
(Mechanical Engineering)															
Max. Marks: 70 Time: 3 Hours Answer any five questions.															
All Questions carry equal marks (14 Marks each)															
						****	****								
1. a)	•	With a simple sketch explain how power is transmitted from engine to wheels in a four wheeler automobile.										10M			
b)	Discuss about	'crar	nk ca	se v	entila	ation'									4M
2.	With the help of	of nea	at sk	etch	expla	ain th	e wo	rking	of m	necha	anica	l fuel	pum	p and	
	compare the s	ame	with	elec	trical	fuel	pum	Э.							14M
2 2	Deceribe with		at die		a tha		ling	-f -m -			:1:00	ition	ovetov	~	1014
3. a)	Describe with Write the funct			•			•		•		•		•		10M 4M
b)		lions	or ar	10-116	eze	Solu	lions	anu	lnem	nosta	als Ir	rauli	alors.		4111
4.	Explain the va	rious	pollu	ution	cont	rol te	echni	aues	emp	love	d for	redu	cina c	diesel	
	engine emissio		1					1							14M
5. a)	Describe the li	ghtin	g sy	stem	s pro	vide	d in f	our w	/heel	er a	utom	obile	s.		7M
b)	Explain the wo	orking	g of s	tand	ard E	Bend	ix dri	ve.							7M
6. a)	Name the diffe		•••							_		_	_		4M
b)	Explain the wo	orking	g of c	entri	fugal	clute	ch wi	th the	e hel	p of a	a sim	ple s	ketch	۱.	10M
7 c)	Evaloia the ter		Com	hara	und C	`to									484
7. a) b)	Explain the ter							hania	m						4M 10M
0)	Discuss the wo	JINII	y Ur I	Javis	5 510	sing	meu		5111.						
8.	Describe with	neat	diad	oram	s the	e wo	rkina	of n	neur	natio	and	vaci	uum I	brake	
	systems.			J. 3. 11				- P			2.110				14M

	Ha	all Ticket Number :								
	Coc	de: 1G573								
		IV B.Tech. I Semester Regular & Supplementary Examinations Nov 2016 Finite Element Methods								
	N	(Mechanical Engineering) 1ax. Marks: 70 Answer any five questions All Questions carry equal marks (14 Marks each) ********								
1.	a)	Write 3-D basic equations of elasticity and deduce the stress strain relation matrix for 3-D, 2-D and 1-D finite elements.	6M							
	b)	Differentiate among Galerkin principle, Rayleigh Ritz method and Weighted residual method of solving the engineering problems using finite element methods.	8M							
2.	a)	Derive the shape functions for 1 D axial bar element with quadratic interpolation function.	4M							
	b)	A stepped bar is subjected to an axial load of 300 kN as shown in figure. Find the nodal displacements, element stresses and strains and reactions. Take $E = 2 \times 10^5 \text{ N/mm}^2$. The area of the bars are 300 mm ² and 200 mm ² .								
		300kN →								
		← 60cm ← 60 cm →	10M							
3.	a)	Derive the stiffness matrix for the truss element by considering the temperature effects.	7M							
	b) The coordinates of the plane truss element is given as 1(20,35) and 2(70,90) mm has the displacement values {-0.01 0.02 -0.01 -0.03} ^T with the material properties 200 GPa Youngs Modulus. Calculate the stiffness matrix, load vector and strain energy if the cross sectional									
		area of the truss is 100 mm ² .	7M							
4.	a)	Differentiate between normal shape functions and Hermite shape functions and discuss the salient features of Hermite shape functions.	4M							
	b)	Estimate the deflection at the center and at a distance of 1.5 m from the end of the fixed beam of length 2 m loaded with uniformly distributed load of 100 kN/m. Take EI = 800 N -mm ² . And also calculate shear stress and bending moment at the centre.	10M							
5.	a)	Why the three noded triangular element is called CST? Explain the strain displacement relation matrix for the CST.	7M							
	b)	For a plane strain problem, the nodal displacements are $u_1 = 4.4 \ \mu m$, $u_2 = 2.2 \ \mu m$, $u_3=2.2 \ \mu m$, $v_1 = 3.8 \ \mu m$, $v_2 = 2.9 \ \mu m$, $v_3 = 4.5 \ \mu m$. Take E=200 GPa, $\mu = 0.3$ and t=10mm. Find the stresses, principal stresses. The coordinates of triangular element are 1(5,25), 2(15,5) and 3(25,15). All dimensions are in millimeters.	7M							
6.	a)	What do you understand by isoparametric representation? How is it different from sub parametric and super parametric conditions?	5M							
	b)	Derive the Jacobian matrix for the 2-D quadrilateral element interms of natural coordinates.	9M							
7.	a)	Derive the stress strain relation matrix for 2D axisymmetric element.	4M							
	b)	A large industrial furnace is supported on a long column of fire clay brick, which is 1 m X 1 m on a side .During steady state operation, installation is such that three surfaces of the column are maintained at 600 K , while the remaining surface is exposed to an air stream for which $T_{\alpha} = 300$ K and $h = 12$ W/m ² K . Determine the temperature distribution in the column and the heat rate to the air stream per unit length of column. Take K= 1 W/m K.	10M							
8.	a)	How to solve the equilibrium equation by considering the dynamic terms in the formulation?								
	b)	Explain. Evaluate the lowest Eigen value and the corresponding Eigen modes for the beam shown in the figure. E = 200 GPa and ρ = 7840 kg/m ³ , I = 2000 mm ⁴ , A = 240 mm ² , L = 300 mm.	4M							

	Ha	all Ticket Number :												_
	Со	de: 1G574								<u> </u>		J	R-11/R-13	
	IV B.Tech. I Semester Regular & Supplementary Examinations Nov 2016													
	Automation and Robotics (Mechanical Engineering)													
	м	ax. Marks: 70		(Med	char	ncal	Eng	jinee	ering)			Time: 3 Hours	
				Ansv	ver c	any f	five	ques	tions	S				
		All G	Questior	ns cc	irry e	-	al ma *****	arks	14 ۸	۸ark	s ec	ich)		
1.		Outline a few salien	t points o	lear	v dis			a aut	oma	tion a	at the	e follov	ving levels:	
		(i) Device level			,	9.	-	5					9	5M
		(ii) Machine level												5M
•		(iii) Cell level												4M
2.		Briefly describe the (i) No buffer s	•				stora	ige b	uffer	effec	ctiver	ness:		7M
		(ii) Infinite-cap	•	•	•									7M
3.	a)	Describe ANY ONE	algorithr	n for	line	balar	ncing							12M
	b)	State the advantage	e of a flex	(ible a	asse	mbly	line.							2M
4.	a)	(i) Draw the SCARA				-						-	•	5M
		(ii) Distinguish betw workspace, the				•						•	•	
		acceleration and			-	1			1			(9-	, . .	5M
	b)	Write down ANY F	FOUR sp	oecifi	catio	ns o	of an	indu	ustria	ıl ma	anipu	lator	of your choice.	
		Provide reasonable					spec	ificat	on.					4M
5.	,	(i) What is meant by(ii) With a schematic					k nl	anar	man	inula	tor	illustra	te that inverse	2M
		kinematics result	-				ir pi	anai	man	ipula	lior,	musuz		3M
	b)	Write down the rele	evant ma	them	atica	al exp	oress	sions	that	shov	n the	e use	of the Jacobian	
		matrix of a manipula						•						214
		(i) Tool veloc (ii) Joint torqu			-				end	effec	tor			ЗМ ЗМ
		(iii) The singul				uotii	ng oi		ond	onoo				3M
6.		A single-link robot v	with a rot	ary j	oint i	s mo	otionle	ess a	nt " =	$= -5^{\circ}$. It is	s desi	red to move the	
		joint in a smooth m												
		polynomial that according position, velocity and	•					•					ne goal. Plot the	14M
7.	a)	(i) With a schemat				-							NY ONE type of	14101
	- /	stepper motor.		, -			- 1	- 1		-		-		6M
		(ii) What is need fo		•••	•			•••	•			•		3M
	b)	A certain potention the output link of a											•	
		V and the total wip		-					-		•		•	
		directly connected to			•			•				•	•	~ • •
8.	a)	to an equal rotation Briefly describe the	-						-				potentiometer.	5M 7M
υ.	a) b)	Illustrate the use of	• •		•••				•	• •		•	cuit boards.	71VI 7M
	- /				-	-	**							

Hall Ti	cket Number :	
Code:	R-11/R-	13
	Tech. I Semester Regular & Supplementary Examinations Nov 20	16
	Advanced Manufacturing Systems	
Max	(Mechanical Engineering) Marks: 70 Time: 3 H	ours
MUX.	Answer any five questions	0013
	All questions carry equal marks (14Marks each)	
1. a)	Explain various types of manufacturing strategies.	8M
b)	Briefly explain the limitations of traditional manufacturing system	6M
2. a)	Describe the methodology to be followed for developing a generative type of	:
<u> </u>	CAPP system	8M
b)	Explain Cellular Manufacturing in detail	6M
3. a)	Briefly explain	
,	(i) Material Requirement Planning (MRP) and	
	(ii) Manufacturing Resource Planning (MRP-II)	8M
b)	What is DBMS? State the advantages and disadvantages of DBMS	6M
4. a)	Define CIM? Explain the elements of CIM	6M
b)	Briefly explain the techniques and applications of Simulation in Manufacturing	8M
5. a)	What is FMS? State the advantages and disadvantages of FMS	8M
b)	Briefly explain the components of FMS	6M
		om
6. a)	How do DNC machines differ from CNC machines	6M
b)	Explain the role of computers in Automated Material Handling System	8M
7. a)	What are the objectives of Automated Storage System	8M
b)	Differentiate AS/RS and Carousal Storage Systems	6M
8. a)	Explain the role of Artificial Intelligence in FMS	8M
b)	What is Machine Vision? Briefly explain the process involved in Machine vision	6M
~)		0.01

Hal	l Tic	cket Number :												Г			
Coc	le: 1	1G578	I	1	1		1	1	1						R-1	11/6	R13
١v	/ B.T	Tech. I Seme			-									tior	ns N	ov 2	016
			Un (Mac I Enç		-		ces	S				
Mc	ax. N	Aarks: 70		,											Tim	ne:3 H	Hours
		A	ll Qu	estic		arry	equ	five (al ma *****	arks (eac	:h)				
1.	a)	What factors a method? Expla								· ·	a ur	iconv	/enti	ona	I ma	chinin	g 8M
	b)) Give the complete classification of unconventional machining methods based on various factors.											n 6M				
2.	a)	Explain the influence of process parameters on metal removal rate in ultrasonic machining.										ic 7M					
	b) List out the applications and limitations of ultrasonic machining.										7M						
3.	a)	What practical are taken care	-	blem	s are	e fac	ed ir	n wat	ter je	et ma	achin	ing?	Hov	w th	ne pro	oblem	is 7M
	b)	Explain the infl in abrasive jet				chara	acteri	istics	of al	brasi	ve o	n the	me	tal r	emov	val rat	e 7M
4.	a)	Explain the wo taking place th	-		nciple	e of e	electi	ro ch	emic	al m	achir	ning.	Wha	at re	eactio	ons ar	e 8M
	b)	Comment abo machining.	out th	e su	rface	e fini	sh a	nd a	ccura	acy o	obtai	ned	in e	lect	ro ch	nemica	al 6M
5.	a)	Explain how thusing an R-C o			c pu	lses	are	conti	ollec	l in e	elect	ric di	ischa	arge	e ma	chinin	g 8M
	b)	Comment abo machining.	ut the	e sel	ectio	n of	tool	and (dieleo	ctric	mate	erial i	n ele	ectri	ic dis	charg	e 6M
6.	a)	With the help o	f line	diag	ram	expla	in th	e ger	nerati	on ai	nd co	ontrol	of e	lect	ron b	eam.	7M
	b)	Explain the ap	plica	tions	and	limit	ation	s of	laser	bea	m m	achin	ning.				7M
7.	a)	Explain the me	echar	nism	of m	etal	remc	oval u	ising	plas	ma.						7M
	b)	What factors machining?	are	to b	e co	nside	ered	whil	e se	lecti	ng a	n et	char	nt fo	or ch	nemica	al 7M
8	a)	With the help o	of line	e dia	gram	ı exp	lain t	the e	lectro	o stre	eam	drillin	ng pr	roce	ess.		7M
	b)	With the help of	of line	e dia	gram	exp	lain t	the s	elect	ive la	ser	sinte	ring.				7M