				1					1	r			л			
Hall	Ticke	et Number :												[
Code	: 5G	577						•		•		•	-	R·	-15	
	١V	B.Tech. IS	Sem	este	er Re	egu	lar E	Exar	ninc	atior	ns N	ove	mber	2018		
		U	n C							ng F		ess				
Maria		d.o. 70		()	Лес	hani	cal	Engi	neel	ring)			Tionat		
	-	′ks: 70 Ill five units b	ov ch	າດດາ	ina (one	aue	stior	n froi	mer	nch	unit		Time: 3		-
7 (15) (0, 0		, 01	1000	in ig i	0110	***		1 11 01			01 III	10/11	701	i and	1
								UNI								
1.	a)	Explain class	sifica	ition	of m	oderi	n ma	chini	ng pi	roces	ses.					7M
	b)	What are the	e con	side	ration	ns of	proc			tion	and	appli	cations	of UCM	1P?	7M
0	-)			6	4	l		OF		4 m m m m m			:	·	4le e :u	
2.	a)	What are the working prine	•••		tran	sauc	ers l	ised	in Ui	traso	nic r	nacn	ining? E	xpiain	their	7M
	b)	Differentiate	•		conv	ventiv	nal	andı	Incol	nven	tions	Ima	chining	nroces	202	7M
	0)	Differentiate	DOLV	VCCII	COIN	Cint				7		ii ma	criming	proces	505	7 101
3.		With a neat s	sketo	h de	scrib	e the				⊥ siple a	and e	eleme	ents, ad	vantag	es of	
		abrasive jet								.1			,	j-		14M
								OF	R							
4.	a)	Write the ap	plica	tions	of d	iffere	nt ty	pes o	of ab	rasiv	es us	sed ir	n AWJ№	1.		7M
	b)	Write advant	tages	s, lim	itatio	ns a	nd a	pplica	ation	s of \	Nate	r jet	machini	ng.		7M
								JNIT								
5.	a)	Explain func		of e	lectro	olyte	useo	d in E	ECM	and	nam	e thr	ee elect	rolytes	with	714
	Ь)	their special		inlo d	of olo	otroc	bom	ical	arind	ina u	ith n	oot o	katab			7M 7M
	b)	Explain the p	JUUC	ipie c	Ji ele	CITOC	nem		-	ing w	/11/11	ears	Kelch.			7 101
6.	a)	Explain in de	etail t	he fu	undai	ment	als a		-	anisn	n of d	chem	ical ma	chining		7M
	b)	List out vario												0		7M
	,				U			JNIT					·	5		
7.	a)	Explain in de	etail	seled	ction	of to	ol el	ectro	de a	nd d	ielec	tric f	luids wit	h rega	rd to	
		surface finis	h and	d ma	chini	ng a	ccura	acy ir	n EDI	M.						7M
	b)	List the Proce	ess p	aran	neters	s of E	DM		•	in the	eir sig	gnifica	ance in r	nachini	ng.	7M
_		_			-		-									
8.	a)	Explain the E				•		•	•				at sketcl	า.		7M
	b)	Explain abou	ut R-	C rel	axati	on ci				DM	proc	ess				7M
0	c)	Describe ob		oriou						ffeet		lo otr	on haam	maahi	inina	
9.	a)	Describe abo process.	out va	anou	is pro	cess	spara	amei	erse	enecu	ing e	lectro	on bean	machi	ining	7M
	b)	State the m	echa	nism) of i	neta	l ren	noval	. me	erits a	and	deme	erits of	laser h	eam	
	~)	machining p							,							7M
								OF	R							
10.	a)	Explain abou	ut pla	isma	arc	mach	nininę	g pro	cess	with	a ne	eat sk	etch.			7M
	b)	Describe pro	ocess	s of E	Electr	on b	eam	mac	hinin	g wit	h ne	at sk	etch			7M
							**	*								

Hall Tic	ket Number :										
Code: 5										R-15	
	IV B.Tech.		ter Rec	nular Fx	amin	atior	ns Na	ove	mber	2018	
				tion ar				0,0		2010	
				inical Er							
Max. M	Narks: 70				-	-				Time: 3 Ho	ours
Ansv	wer all five unit	ts by chc	osing or	ne quest	ion fro	m ec	ich u	nit (5 x 14	= 70 Marks)	
]					
1.	Explain the v	various tv	nes of a	_		j eme v	vith re	ممعد	ct to fe	atures and	
	configuration	•	•		•			•			
	variety and p		•								14M
	OR										
2. a)	2. a) A 20-station transfer line is divided into two stages of 10 stations each. The ideal cycle time of each stage is 1.2 minute. All of the stations in the line have the same probability of stopping is 0.005. We assume that the downtime is constant when a breakdown occurs, $T_d = 8.0$ minute. Using the upper-bound approach, compute the line efficiency for the following buffer									10M	
b)	Enlist the rea	asons for	a down	time in a	utoma	ted p	roduc	ction	line.		4M
				UN	T–II]					
3.	 What is need for line balancing in assembly processes? Explain the factors which may improve the line performance beyond that what the line balancing algorithms provide. 14M 										
				C	D R						
4.	The table be new model	toy (a) c	onstruct	the prec	edenc	e dia	gram	for	this jo	b. (b) If the	

new model toy (a) construct the precedence diagram for this job. (b) If the ideal cycle time = 1.1 minute, repositioning time = 0.1 minute and uptime proposition is assumed to be 1.0, what is the theoretical minimum No. of workstations required to minimize the balance delay under the assumption that there will be one worker per station? (c) Use the ranked positional weights method to assign work elements to the stations. (d) Compute the balance delay for your solution.

Work element	1	2	3	4	5	6	7	8	9	10
Time to perform work element, Te (min)	0.5	0.3	0.8	0.2	0.1	0.6	0.4	0.5	0.3	0.6
Immediate Predecessors	_	1	1	2	2	3	4,5	3,5	7,8	6,9

14M

7M

7M

UNIT–III

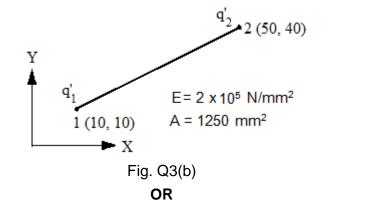
b) Explain the components of the robotic system.

OR

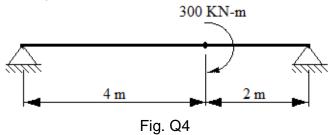
6. What is robotics? Explain different types of robot configurations. Explain the features of each type with applications. 14M

UNIT-IV

7.		Explain the Langrange-Euler formulation for a 2 degree of freedom robot.	14M
		OR	
8.	a)	Explain briefly about manipulator path control motions.	5M
	b)	What are homogeneous transformations in robot kinematics? For a vector 20 i + 25 j + 10 k, perform a translation by a distance of 8 units in x direction, 7 units in y direction and 4 units in z direction.	9M
		UNIT-V	
9.	a)	Explain the Inductive proximity sensors.	7M
	b)	Explain with neat sketch the application of robot in material handling.	7M
		OR	
10.	a)	Explain with a neat sketch about application of robot in any assembly operation.	7M
	a)	Explain the working principle of any one position sensor.	7M



Hall	Ticł	et Number :											
Code					1		<u> </u>	I	<u> </u>	J	F	R-15	
Couc		IV B.Tech. I Semes	ter Regu	Jar E	Exan	nina	tion	s No	over	nbe	r 2018		
			utomol		-			-					
Max	Mc	(ırks: 70	Mechar	lical	Engi	neei	ing)			Time	e: 3 Ho	ours
		er all five units by cho	osing one	e que		fron	n ead	ch ur	nit (t	5 x 14	-		
					NIT–I								
1.	a)	Write the functions of	4 wheeler			le bra	ake.						4M
	b)	Explain about turbo cl	narging ar	nd sup	oer cł	nargi	ng.						10M
			OR										
2.		Write the components							_				4M
	b)	With the help of neat automobile.	diagrams	s expl	ain th	ne w	orkin	g of	horn	and	wiper i	n an	10M
				U	NIT-I								
3.	a)	Explain the working p	rinciple of	a sin	nple c	arbu	retor						6M
	b)	With the help of a nea	at diagram	n exp	lain tl	ne fu	nctio	n of	a dis	stribut	or type	fuel	
		pump.											8M
4.	a)	List the advantages o	f CNG		OR								4M
		What are the merits a		its of	LPG	as a	n aut	omo	bile f	uel?			10M
	,				NIT-II								
5.	a)	Explain why engines	should not	t be s	ub cc	oled							4M
	b)	Explain the working on neat sketch	f Forced	Circu	lation	Coc	oling	Syst	em v	vith th	ne help	of a	10M
		near sketch			OR								TOW
6.	a)	Discuss about the spa	ark advand	ce an	d reta	ard m	echa	anisn	าร				4M
	b)	Draw the layout of e	lectronic i	gnitio	n sy	stem	. Exp	olain	the	funct	ion of e	each	
		component.											10M
7.	2)	What are vericus adv	ontagos o		IIT-I		ch o	vor o	inalo	nlota	olutob		4M
7.		What are various adv Write about functions	-		-				-	-			10M
	5)	White about functions			OR		shpia			- 113	s unve :		TOW
8.	a)	Explain various functi	ons of trar	nsmis	sion	syste	em.						4M
	b)	Explain the working o	synchron	nesh	gear	box	with t	he h	elp o	f a ne	at diag	ram.	10M
					VIT-V	1							
9.		Write about requireme											4M
	b)	Sketch the arrangem and explain?	ent of pne	euma	tic br	akin	g sys	stem	use	d in a	automol	biles	10M
		·			OR								
10.	a)	Discuss about antiloc	k braking :	syste	m.								4M
	b)	Explain about steering	g geometr	•)							10M
				**	*								


Hall	Tick	et Number :	_								
Cod	e: 50	G575 R-15									
	I	V B.Tech. I Semester Regular Examinations November 2018									
		Advanced Manufacturing Systems									
		(Mechanical Engineering)									
-		arks: 70 Ill five units by choosing one question from each unit (5 x 14 = 70 Marks) *********	-								
1.		UNIT-I Define manufacturing system? Explain the functions of various components in manufacturing system.	14M								
		OR	1410								
2.		Explain									
2.		i) Level of automation ii) System flexibility iii) System layout	14M								
		UNIT–II									
3.	a)	Write the principles of just-in-time production system.	7M								
	b)	Write the steps in rank-order clustering algorithm.	7M								
		OR	7M								
4.	a)										
	b)	Define cellular manufacturing. What are the manufacturing conditions under which cellular manufacturing is most suitable.									
			7M								
5.	a)	Define lean manufacturing. Explain the steps involved in lean manufacturing.	7M								
	b)	How to reorganize the production system for agility.	7M								
		OR									
6.	a)	Why just-in-time production required in lean manufacturing?	7M								
	b)	How managing relation are maintained for agility.	7M								
7.		UNIT-IV Name three production situations in which FMS technology can be applied.									
7.		Explain these production systems with examples.	14M								
		OR									
8.		What is carousel system? Explain the two storage location strategies?	14M								
		UNIT–IV									
9.	a)	Draw and explain the basic structure of expert system?	7M								
	b)	Explain How expert system is useful for FMS with a case study.	7M								
		OR									
10.	a)	Explain knowledge based system with suitable sketch.	7M								
	b)	Describe the elements of artificial intelligence. Is machine vision a part of it?	71/								
		Explain. ***	7M								

Hall	IICK	et Number :	
Code	: 5G	573 R-15	
		IV B.Tech. I Semester Regular Examinations November 2018	
		Finite Element Methods	
Ma	~ NA.	(Mechanical Engineering) arks: 70 Time: 3 Ho	urc .
		five units by choosing one question from each unit (5 x 14 = 70 Marks)	013

1.	,	What is FEM? List out the Engineering applications of Finite Element Method.	6N
	b)	Explain plane stress and plane strain problem with examples and write the relation between stress and strain.	8N
		OR	010
2.	a)	Starting with shape functions, derive the element stiffness matrix for 1D	
	.,	quadratic element.	4N
	b)	An axial load P = 300 KN is applied at 20° C to the rod as shown in the	
		Fig. Q 2(b). The temperature is then raised to 60° C.	
		i) Assembly the global stiffness matrix (K) and global load vector (F).	
		ii) Determine the nodal displacements and element stresses.	
		Alternation Steel	
		(1) 300 KN (2)	
		200 mm 300 mm	
		Fig. Q 2b) $E_1 = 70 \times 10^9 \text{ MPa}, E_2 = 200 \times 10^9 \text{ MPa},$	
		$A_1 = 900 \text{ mm}^2$, $A_2 = 1200 \text{ mm}^2$	
		$\alpha_1 = 23 \times 10^{-6/0}$ C, $\alpha_2 = 11.7 \times 10^{-6/0}$ C	10N
3.	a)	Obtain the stiffness matrix for the truss element.	7N
	b)	Consider the truss element shown in Fig. 3 (b). The x, y co-ordinates of the two	
		nodes is indicated in the Fig. Q3(b). If $q = [0.38, 0.25, 0.53, 1.1]^T$ mm, determine	
		the following.	
		 the vector q' the stress in the element and 	

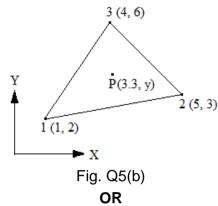
iii. the stiffness matrix of the element

4. A simply supported beam of span 6m and uniform flexural rigidity EI=40,000kN-m² is subjected to clockwise couple of 300 kN-m at a distance of 4m from the left end as shown in the Fig. Q4. Find the deflection at the point of application of the couple and internal loads.

14M

7M

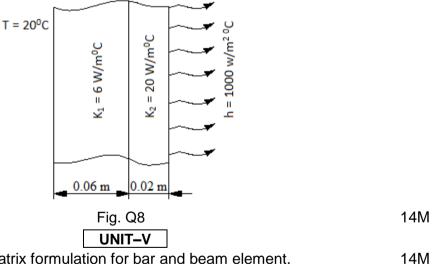
Code: 5G573


UNIT-III

5. a) Derive the shape functions for triangular element (CST element) in natural coordinate system.

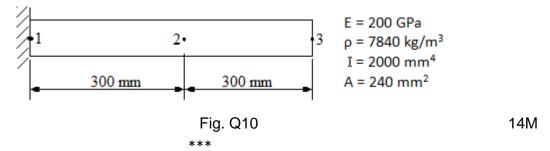
9M

5M


b) A model co-ordinate of the triangular element is as shown in Fig. Q5(b). At the interior point 'P' the co-ordinate is 3.3 and $N_1 = 0.3$. Determine 'N₂' and the V co-ordinate at point 'P'.

- 6. Derive strain displacement [B] matrix for axisymmetric 3 noded CST element 14M UNIT–IV
- Derive an expression for Jacobean matrix for a four noded quadrilateral element 7. a) 8M Explain the concept of ISO, sub and super parametric elements and their uses. b) 6M

OR


8. Determine the temperature distribution through composite wall, subjected to convection heat transfer on the right side surface, with convective heat transfer coefficient shown in Fig. Q8. The ambient temperature is -5°C. Assume unit area.

9. Derive the lumped matrix formulation for bar and beam element.

OR

10. Find the lowest Eigen value and te corresponding Eigen mode for the beam shown in Fig. Q10

H	all T	icket Nu	imber :] ,		
	de: 4	5G571						I					R-15	
000			Tech. I	Seme	ster F	Regu	lar Ex	kam	inatio	ns N	over	mber	2018	
					Ор	erati	ions	Rese	earch					
					(Med	chan	ical E	ngin	eering)				
Mc		∧arks: 7						,	_				Time: 3 Ho	Urs
	An	swer all	five units	s by ch	oosinę		e ques: ******		rom ec	ICh (unit (:	5 X 4 =	= 70 Marks)	
							UN	NIT-I						
1.	a)	Solve t	he follow	ing LPI	> :									
		Minimiz	ze Z= 4x1	1+3x ₂ +>	(3									
		Subjec	t to x1+2	x₂+4x₃≥	<u>-</u> 12									
		3x ₁ +2x	2+x3 ≥ 8											
		$x_1, x_2, x_3 \ge 0$											1	0M
	b)	Discus	s the vari	ious ph	ases i	in solv	/ing ar	n OR	proble	m				4M
	,			•			OF		•					
2.		Solve t	he follow	ina I P	nrohle	em ar								
۷.			ze Z=6x₁·	•	probit	sin gr	apriloc	any.						
			t to the c	-	nts:									
		$2x_1 + 3x_2$		onotrai										
		$3x_1 + 2x_2$	_											
			3 and x_1 ,	x₂ ≥ 0									1	4M
		<i>x</i> ₁ . <i>x</i> ₂ = 0		<u> </u>				IIT–II					•	
3.		Find the	e optima	l solutio	on for	the fo				tion i	oroble	m		
0.			oopuna				Destin	•				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		-				D ₁	D ₂	2	D ₃		D ₄	Supp	oly	
			• • •	01		11	13		17	_	14	250		
			Origin	02 03		16 21	18 24		<u>14</u> 13		<u>10</u> 10	300 400		
				() ~										

OR

4. A machine operator processes five type of items on his machine each week and must choose a sequence for them. The set-up cost per change depends on items presently on the machine and the setup to be made according to the following table. If he processes each type of item once and only once in each week, how should he sequence the items on his machine in order to minimize the total set-up cost?

		<u>To item</u>												
		Α	В	С	D	E								
From	А		4	7	3	4								
From item	В	4		6	3	4								
nem	С	7	6		7	5								
	D	3	3	7		7								
	E	4	4	5	7									

14M

UNIT-III

5. The following failure rates have been observed for a certain type of light bulb. The replacement of an individual bulb on failure cost Rs 1.25. The cost of group replacement is 80paise per bulb. Determine the better one among the individual and group replacement policies.

End of the week	1	2	3	4	5	6	7	
Probability failure to date	0.05	0.15	0.25	0.46	0.68	0.88	1.00	14M
		OR						

6

Solve the following ga	ame
------------------------	-----

		Player B										
		-		=	III	IV						
Player	I	6		8	3	13						
Player A	II	4		1	5	3						
		8		10	4	12						
	IV	3		6	7	12						
			VIT-IV									

14M

10M

4M

4M

- 7. a) Vehicles are passing through a toll gate at the rate of 70 per hour. The average time to pass through the gate is 45 seconds. The arrival rate and service rate follow poisson distribution. There is a complaint that the vehicles wait for a long duration. The authorities are willing to install one more gate to reduce the average time to pass through the toll gate to 35 seconds if the idle time of the toll gate is less than 9% and the average queue length at the gate is more than 8 vehicles, check whether the installation of the second gate is justified?
 - b) What are the assumptions of the basic inventory model? How does each affect the model?

OR

- 8. a) What are the objectives that should be fulfilled by an inventory control system? 4M
 - b) A company uses annually 24,000 units of raw material which costs Rs.1.25 per unit. Placing each order costs Rs.22.50 and the carrying cost is 5.4% per year of the average inventory. Find the economic lot size and the total inventory cost (including cost of material). Should the company accept the offer made by the supplier of a discount of 5% on the cost price on a single order of 24,000 units? 10M

UNIT–V

- 9. a) State the advantages and limitations of simulation
 - b) Discuss briefly various types of simulation models 10M

OR

10. Solve the following linear programming problem by dynamic programming: Max Z=3x₁+x₂ Subject to constraints $2x_1+x_2 \le 6$ $X_1 \le 2$ $X_2 \le 4$ and $x_1, x_2 \ge 0$

14M

Hall	Ticket Number :	
Code	R-15	
	IV B.Tech. I Semester Regular Examinations November 2018	
	Rapid Prototyping	
Max.	(Mechanical Engineering) Marks: 70 Time: 3 Ho	ours
	nswer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
	********** UNIT–I	
1. a)	With example, explain the historical development of Rapid prototyping technology.	7M
b)	List the applications of RP technology in manufacturing industries.	7M
	OR	
2. a)	Explain the Impact of Rapid prototyping on Product Development.	7M
b)	Differentiate Subtractive Prototyping process and Additive Prototyping process.	7M
,	UNIT-II	
3.	Briefly explain the principle and process details in stereo lithography system with neat sketch.	14M
	OR	
4.	Describe the process of fused deposition modeling and list the factors that affect	
	the part quality.	14M
	UNIT–III	
5. a)	What are the various LOM materials and their typical applications?	7M
b)	Write the models and specifications of different LOM machines used.	7M
	OR	
6.	List advantages and disadvantages when rapid prototyping concept is applied to solid ground curing (SGC)?	14M
		1-111
7. a)	List out technical specifications of 3D printer.	7M
b)	Compare LOM with SLS with suitable reasons.	7M
	OR	
8.	With a neat sketch, explain the following concept modelers	
	(i)Sander's model maker (ii) 3D Printer	14M
	UNIT–V	
9.	Explain Beam Deposition (LENS) Rapid Prototyping process in detail with neat	
		14M
10 ~		714
,		7M 7M
(U	Explain silicon rubber tooling.	/ IVI
10. a) b)	sketch. OR What are different Rapid Tooling Techniques? Explain silicon rubber tooling.	7