\square
Code: 7G671
IV B.Tech. I Semester Regular Examinations February 2021

Design and Drawing of Irrigation Structures

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any One question from the following ($1 \times 70=70 \mathrm{Marks}$)

Marks CO | Blooms |
| :---: |
| Level |

1. Design a canal regulator for the following data. Draw important views on a separate drawing sheet and assume if any necessary data
Discharge of parent channel : $125 \mathrm{~m}^{3} / \mathrm{sec}$
Discharge in distributor : $32 \mathrm{~m}^{3} / \mathrm{sec}$
FSL of parent channel : 218 m US / 217.80 DS
Bed width of parent channel : 52m US $/ 49 \mathrm{~m}$ DS
Depth of water in parent channel : 2.5 m US/2.5m DS
Depth of water in distributor : 1.5 m
Bed width of distributor : 15 m
FSL of distributor : 217 m

OR

2. Design a siphon aqueduct (type-III) for forming the canal through an RCC through with the following data:
Discharge of the canal : 32 cumecs
Bed width of the canal : 20 m
Depth of water in the canal : 1.4 m
Bed level of the canal : +260.50m
High flood discharge of the drainage : 300 cumecs
High flood level of the drainage : +261.00 m
Bed level of the drainage : +258.50 m
General ground level : +260.50 m
Canal free board : 1.0 m
Canal side slopes both inside and outside are 2: 1 in embankment Top width of the bank on left side is 5 m carries a road way while the top width on the right bank is 3 m .
The foundations of abutments and respective wing-wall and returns both on the u / s and d / s side are taken to the respective scour depth levels assuming silt factor as 1.0. Hard soil fit for foundation is available below at +256.50 m .
Limiting velocity in the drainage not to exceed $2.5 \mathrm{~m} / \mathrm{sec}$.
The velocity in the canal trough is not to exceed twice the normal velocity in the canal. Find out the loss of head in the canal due to the crossing by total energy line method. Similarly find out the H.F.L of the drain u / s of the structure, keeping the normal H.F.L of the drain at the d / s side returns of the drainage barrel

IV B.Tech. I Semester Regular Examinations February 2021
Disaster Management
(Common to All Branches)

Max. Marks: 70
Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain briefly about how hazards can become a disaster and Summarize the concept of disaster.

8M CO1
b) Illustrate the differences between hazard and disaster.

6M CO1

OR

2. Explain the following terms in an uneducated person:
a) Disaster
b) Risk
c) Vulnerability
d) Hazard

14M CO1

UNIT-II

3. a) Illustrate the effects of the volcanoes on the environment. List out various materials comes out from volcanic eruptions.

7M CO2
b) State epicenter and focus? Create with a neat diagram? Based on depth how many type types of earthquake are classified.

7M CO2
OR
4. a) Write a short note on earthquakes. List out various materials comes out from volcanic eruptions

7 M CO2
b) Demonstrate natural disaster and manmade disaster, what are the effects of disasters on environmental health facilities and services.

7M CO2

UNIT-III

5. a) Discuss the role and functions of a Disaster Manager, health effects of global environmental change.

7M CO3
7M CO3
OR
6. List different disaster impacts and explain any four with the help of a case study.

UNIT-IV

7. a) What are the steps involved in risk communication?

7M CO4
b) What are the drought control measures adopted across the globe?

7M CO4

OR

8. a) Illustrate various mitigation measures to be taken at the time of earthquakes.

7M
b) Elaborate the activities of panchayat raj institutions during disaster.

UNIT-V

9. a) Discuss the important steps in relief distribution.
b) Sustainability, comment on this term and generally write how you can apply sustainability in your daily life with at least 5 examples.

9M CO5 L3

OR

10. a) Identify the different types of rehabilitation post disaster.

6M CO5
b) Discuss about the positive and negative impacts of construction of dams.

8M CO5

Code: 7G677
IV B.Tech. I Semester Regular Examinations February 2021
Finite Element Methods for Civil Engineering
(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

```
                                    *********
```


UNIT-I

1. a) Explain the step wise procedure involved in Finite Element method.

Marks CO

Blooms

Level
b) Using Rayleigh - Ritz method find displacement of the bar shown in Fig. Assume $u=a_{1}+a_{2} x, A=100 \mathrm{~mm}^{2}, E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

OR

2. a) Define Plane Stress and Plane Strain Condition with example.
b) List out the equivalence and difference between Rayleigh- Ritz method and finite element method.

UNIT-II

3. a) Derive the stiffness matrix for a one-dimensional axial bar element.

9M CO2
L2,L4
b) Explain Local and Global Coordinate Systems

5M CO2

OR

4. Using finite element method, derive the displacement matrix. Also find member strain and stress, for the steel specimen shown in fig. $10 . \mathrm{c} / \mathrm{s}$ area at (1) - (1) is equal to $=425 \mathrm{~mm} 2, \mathrm{c} / \mathrm{s}$ area at $(2)-(2)$ is equal to $=125 \mathrm{~mm} 2$.

UNIT-III

5. a) For the plane stress element shown in figure. Evaluate the stiffness matrix. Assume modulus of elasticity $E=210 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$, poisson's ratio $\mu=0.25$ and element thickness $\mathrm{t}=10 \mathrm{~mm}$. The coordinates are given in mm .

b) Derive the [D] matrix for the problem of plane stress

OR

6. a) Derive the shape functions and nodal load matrix for three noded triangular
element
Write down the shape functions for four noded rectangular elements using natural coordinate system
9M CO3 L4
5M CO3 L4

UNIT-IV

7. a) Fig. shows a three noded bar element in Cartesian and natural coordinates. If the element is isoparametric, find the Jacobian matrix and global derivatives of shape function, and hence make the $[B]$ matrix.

b) Discuss the advantages of isoparametric Element

OR

8. a) Derive the jacobian matrix for four noded quadrilateral element.
b) What is an iso-parametric, sub-parametric and super-parametric element and explain briefly with examples.
CO4
9. Derive iso- parametric formulation for 4 noded quadrilateral elements?
7M CO5

OR

10. Explain the different solution techniques for static loads in FEM?
14M CO5
L5

5M CO3 L3
\square
Code: 7G672
IV B.Tech. I Semester Regular Examinations February 2021

Foundation Engineering

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. How do you prepare a soil investigation report? Explain in detail.

OR

2. Explain the methods of soil exploration with neat sketches.

UNIT-II

3. Describe any two theories of earth pressure.

OR

4. Calculate the factor of safety with respect to cohesion, of a clay slope laid at 1 in 2 to a height of 12 m , if the angle of internal friction $\varnothing=10$ degrees, $C=25 \mathrm{kN} / \mathrm{m}^{2}$, what will be the critical height of the slope in this soil?

UNIT-III

5. Explain the factors governing the selection of types of foundations.

OR

6. A strip footing 1.5 m wide, depth 2 mtrs rests on the surface of a dry cohesive soil having $\varnothing=0$ degrees, $c=20 \mathrm{KN} / \mathrm{m}^{2}$ and $\gamma=1.90$ tons $/ \mathrm{m}^{3}$. If the water table rises temporarily up to the surface due to flooding, calculate the percentage reduction in the ultimate bearing capacity of the soil. Assume $\mathrm{N}_{\mathrm{c}}=5.7, \mathrm{Nq}=1, \mathrm{~N}^{\gamma=0}$.

UNIT-IV

7. Explain the procedure involved in the standard penetration test with sketch.

OR

8. a) Compare the merits and demerits of Terzaghis method and Skemptons method of calculating bearing capacity of soils.
b) Briefly explain types of failure in soil (i) General shear failure (ii) Local shear failure

7M CO3
L2

7M CO3 L2

UNIT-V

9. How do you estimate the pile load capacity by pile load test?

OR

10. Explain the method of determining group capacity of piles by any two methods.

14M CO1
R-17

IV B.Tech. I Semester Regular Examinations February 2021
Human Resource Management
(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define the nature and scope of Human Resource Management
b) What are the different functions of HRM

		Marks	co	Blooms Level
	UNIT-I			
1. a)	Define the nature and scope of Human Resource Management	7M	1,2	1
b)	What are the different functions of HRM	7M	1,2	4
	OR			
2. a)	What is HRM? Explain about Competitive Challenges influencing HRM.	7M	1,2	4
b)	Differentiate Personnel Management and HRM	7M	1,2	5
	UNIT-II			
3. a)	Define HRP. Explain HRP need and importance in an organization.	7M	6, 7, 8	1
b)	Explain about different Barriers to HRP.	7M	6, 7, 8	2
	OR			
4. a)	Define job analysis. Explain the different methods of JE and its process	7M	6, 7, 8	1
b)	Define Job Design and its importance in an organization.	7M	6, 7, 8	1
	UNIT-III			
5. a)	If you are the HR Manager, what type of recruiting methods is using to recruit for Manufacturing and for services industry?	7M	1, 4,	2
b)	Define process of recruitment.	7M	1, 4,	1
	OR			
6. a)	What is recruitment? List out the process of recruitment.	7M	1, 4,	4
	"A well-thought-out orientation program is essential for all new employees, whether they have experience or not". Explain why you agree or disagree with the above statement.	7M	1, 4,	2
	UNIT-IV			
7. a)	List and briefly explain about Training Methods	7M	4,5	1
b)	What is the need of training an employee in an organization?	7M	4, 5	4
	OR			
8. a)	Is an employee should train. If yes list out the advantages and disadvantages of training.	7M	4,5	4
b)	Define different career stages.	7M	4,5	1
	UNIT-V			
9. a)	Define what Employee Compensation is and list out the factors influencing Employee Compensation.	7M	3, 4, 5	1
b)	Explain the need of IR with respect to HRM	7M	3, 4, 5	2
	OR			
10. a)	Describe the pros and cons of any four Performance Appraisal tools.	7M	3, 4, 5	2
b)	Explain different methods of Performance Appraisal.	7M	3, 4, 5	2

OR

2. a) What is HRM? Explain about Competitive Challenges influencing HRM.
b) Differentiate Personnel Management and HRM

		Marks	CO	Blooms Level
	UNIT-I			
1. a)	Define the nature and scope of Human Resource Management	7M	1,2	1
b)	What are the different functions of HRM	7M	1,2	4
	OR			
2. a)	What is HRM? Explain about Competitive Challenges influencing HRM.	7M	1,2	4
b)	Differentiate Personnel Management and HRM	7M	1,2	5
	UNIT-II			
3. a)	Define HRP. Explain HRP need and importance in an organization.	7M	6, 7, 8	1
b)	Explain about different Barriers to HRP.	7M	6, 7, 8	2
	OR			
4. a)	Define job analysis. Explain the different methods of JE and its process	7M	6, 7, 8	1
b)	Define Job Design and its importance in an organization.	7M	6, 7, 8	1
	UNIT-III			
5. a)	If you are the HR Manager, what type of recruiting methods is using to recruit for Manufacturing and for services industry?	7M	1, 4,	2
b)	Define process of recruitment.	7M	1, 4,	1
	OR			
6. a)	What is recruitment? List out the process of recruitment.	7M	1, 4,	4
b)	"A well-thought-out orientation program is essential for all new employees, whether they have experience or not". Explain why you agree or disagree with the above statement.	7M	1, 4,	2
	UNIT-IV			
7. a)	List and briefly explain about Training Methods	7M	4, 5	1
b)	What is the need of training an employee in an organization?	7M	4,5	4
	OR			
8. a)	Is an employee should train. If yes list out the advantages and disadvantages of training.	7M	4,5	4
b)	Define different career stages.	7M	4,5	1
	UNIT-V			
9. a)	Define what Employee Compensation is and list out the factors influencing Employee Compensation.	7M	3, 4, 5	1
b)	Explain the need of IR with respect to HRM	7M	3, 4, 5	2
	OR			
10. a)	Describe the pros and cons of any four Performance Appraisal tools.	7M	3, 4, 5	2
b)	Explain different methods of Performance Appraisal.	7M	3, 4, 5	2

IV B.Tech. I Semester Regular Examinations February 2021
Transportation Engineering
(Civil Engineering)

Max. Marks: 70

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Briefly outline the highway development in India and explain the necessity followed by objectives of highway planning.
b) The speeds of overtaking and overtaken vehicle are 80 and 60 kmph respectively. If the acceleration of the overtaking vehicle is 2.5 kmph per second, calculate the safe passing sight distance for (i) One- way traffic, (ii) Two -way traffic

OR

2. a) Determine the length of different categories of roads in a state in a India by the year 2001, using Third Road Development formula and the following data:
Total area of the state $=80,000 \mathrm{sq} . \mathrm{km}$
Total no. of towns as per 981 census $=86$
Overall road density aimed at $\quad=82 \mathrm{~km}$ per $100 \mathrm{sq} . \mathrm{km}$ area
b) A vertical summit curve is formed when an ascending gradient of 1 in 25 meets another ascending gradient of 1 in 100 . Find the length of the summit curve to provide the required sight distance (SSD and OSD) for a design speed of 80 kmph .

UNIT-II

3. a) Explain the relationship between speed, travel time, volume, density and capacity.
b) A fixed time 2 - phase is to be provided at an intersection having a North - South and an East - West where only straight - ahead traffic is permitted. The design hour flows from the various arms and their saturation flows are given below

	North	South	East	West
Design Hourly flow(q) in PCU/hr	800	400	750	1000
Saturation flow (s) in PCU/hr	2400	2000	3000	3500

OR
4. a) What are the various types of traffic marking commonly used? What are the uses of each?
b) Two vehicles A and B of equal weight, approaching from cross roads (at right angles) collide with each other. They skid through distances 30 m and 20 m before collision and 20 m and 35 m after collision. If the directions of skidding vehicles A and B after collision are 45° and 130° with original path respectively, calculate the original speeds of the two vehicles before the applications of brakes. Assume $f=0.55$.

UNIT-III

5. a) With a neat sketch explain the conflict points in case of four leg and three legged uncontrolled intersections. Bring out the salient features for the design for reducing the collision
b) Discuss about importance of channelization. Explain how it is provided at different at grade intersections with neat sketches.
6. a) The width of approaches for a rotary intersection is 12 m . The entry and exit width at the rotary is 10 m . Table below gives the traffic from the four approaches, traversing the intersection. Find the capacity of the rotary.

Approach	Left turn	Straight	Right turn
North	450	700	320
South	360	350	400
East	245	420	510
West	345	530	560

b) Explain grade separated intersection, the advantageous and limitations.
$\begin{array}{lll}7 M & 3 & 4\end{array}$
7M 3

UNIT-IV

7. Why is it important for highway engineer to study the behavior of soil? What are the desirable properties of sub-grade soil? Enumerate the identification and classification tests of soils.

OR

8. a) Discuss the desirable properties of road aggregate along with its specifications for suitability in road constructions
b) Explain the test procedure for conduct of CBR test for determination of soil subgrade strength

UNIT-V

9. a) Explain the design factors considered in flexible pavement.
b) Design the size and spacing of dowel bar at the expansion joint of CC pavement having thickness of $25 \mathrm{~cm} . \mathrm{E}=3 \times 10^{5} \mathrm{~kg} / \mathrm{cm}^{2}, \quad=0.15$, design wheel load 5100 kg , joint spacing $2.5 \mathrm{~cm}, \mathrm{Fs}=1000 \mathrm{~kg} / \mathrm{cm}^{2}, \mathrm{Ff}=1400 \mathrm{~kg} / \mathrm{cm}^{2}, \mathrm{Fb}=100 \mathrm{~kg} / \mathrm{cm}^{2}$ and $\mathrm{k}=7.1 \mathrm{~kg} / \mathrm{cm}^{3}$. Assume other data suitably as per IRC

OR

10. a) Explain the design of flexible pavement using CBR and GI method
b) A concrete slab 7.5 m long, 3.5 m wide and 25 cm thick, is subjected to a temperature differential of $10.5{ }^{\circ} \mathrm{C}$. Assuming that $k=50.0 \mathrm{MN} / \mathrm{m}^{3}$ and $t=9 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. Determine the maximum curling stress in the interior, edge and corner of the slab. Take the radius of contact as $a=150 \mathrm{~mm}$
$7 \mathrm{M} \quad 4$

IV B.Tech. I Semester Regular Examinations February 2021

Bridge Engineering

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
UNIT-I

1. a) Explain the various types of IRC loadings in the design of highway bridges.
b) Explain the various steps involved in the design of railway bridge in detail.

7M
BT-1
7M
BT-2
OR
2. Design a box culvert with the following particulars:

Inside dimensions: $3.5 \mathrm{~m} \times 3.5 \mathrm{~m}$; Live load: IRC Class AA; Density of Soil: $18 \mathrm{kN} / \mathrm{m}^{3}$; Angle of repose: 30°; Materials: M25 concrete and Fe415 grade steel. 14 M

UNIT-II

3. Sketch the typical reinforcement details for the deck slab of a reinforced concrete culvert with a clear span of 6.0 m . Assume width of roadway is double lane.

OR

4. Design a RCC T-beam girder for a national highway bridge to suit the following data: Clear width of Roadway: 7.5 m , width of kerbs: 600 mm ; Effective span: 20m; Live load: IRC Class AA tracked; Thickness of wearing coat: 80 mm ; Number of main girders: 4; Materials: M20 Grade concrete and Fe415 bars

UNIT-III

5. A plate girder is to be designed for a B G track to suit the following data: Span of the bridge: 20 m ; Dead load of track: $7.5 \mathrm{kN} / \mathrm{m}$; E.U.L.L. for B.M Calculations per track: 1964 kN; E.U.L.L. for shear calculations per track: 2168 kN. Design the plate girder to confirm to the IRC loadings.

OR

6. Design a composite bridge super structure and substructure with the following data: Span: 18 m; Number of lanes: Two; Live load: IRC class AA; Materials: M20 Grade concrete and Fe415 bars; Top level of road embankment: 1000 m ; Bed level of the stream: 992 m ; HFL of the stream: 994.5 m ; Top level of the stream bund: 995 m ; Hard soil for foundation is available at 900 m .

UNIT-IV

7. Design a mild steel rocker bearing for transmitting the superstructure reactive load of 1200 kN . Allowable pressure on bearing block: 3.8 MPa ; Permissible bending stress ($0.66 f_{y}$): 165 MPa ; Permissible bearing stress: 100 MPa ; Permissible shear stress: 100 MPa .

OR

8. What are the steps involved in the design of elastomeric pad bearing? Explain in detail with equations.

UNIT-V

9. Explain different types of piers with neat sketches.

14M
OR
10. a) Write about general features of abutments. 7M
b) Draw the sketch of abutment showing typical details along with its structural components.

