| Hall Ti | cket Number :                                                                                    |                           |
|---------|--------------------------------------------------------------------------------------------------|---------------------------|
| Caday   |                                                                                                  | R-17                      |
| Code: 7 | IV B.Tech. I Semester Regular Examinations February 2                                            | 2021                      |
|         | Design and Drawing of Irrigation Structures                                                      | -                         |
|         | ( Civil Engineering )                                                                            |                           |
| Max. M  |                                                                                                  | Time: 3 Hours             |
|         | Answer <i>any One</i> question from the following (1 x 70 = 70Mark<br>*****                      | KS )                      |
|         |                                                                                                  | Blooms                    |
|         |                                                                                                  | Marks CO Level            |
| 1.      | Design a canal regulator for the following data. Draw important views                            |                           |
|         | on a separate drawing sheet and assume if any necessary data                                     |                           |
|         | Discharge of parent channel : 125 m <sup>3</sup> /sec                                            |                           |
|         | Discharge in distributor : 32 m <sup>3</sup> /sec                                                |                           |
|         | FSL of parent channel : 218m US / 217.80 DS                                                      |                           |
|         | Bed width of parent channel : 52m US /49 m DS                                                    |                           |
|         | Depth of water in parent channel : 2.5m US/2.5m DS                                               |                           |
|         | Depth of water in distributor : 1.5m                                                             |                           |
|         | Bed width of distributor : 15m                                                                   |                           |
|         | FSL of distributor : 217m                                                                        | 70M                       |
|         | OR                                                                                               |                           |
| 2.      | Design a siphon aqueduct (type-III) for forming the canal through an                             |                           |
|         | RCC through with the following data:                                                             |                           |
|         | Discharge of the canal : 32 cumecs                                                               |                           |
|         | Bed width of the canal : 20 m                                                                    |                           |
|         | Depth of water in the canal : 1.4 m                                                              |                           |
|         | Bed level of the canal : +260.50m                                                                |                           |
|         | High flood discharge of the drainage : 300 cumecs                                                |                           |
|         | High flood level of the drainage : +261.00 m                                                     |                           |
|         | Bed level of the drainage : +258.50 m                                                            |                           |
|         | General ground level : +260.50 m                                                                 |                           |
|         | Canal free board : 1.0 m                                                                         |                           |
|         | Canal side slopes both inside and outside are 2: 1 in embankment                                 |                           |
|         | Top width of the bank on left side is 5m carries a road way while the                            |                           |
|         | top width on the right bank is 3m.                                                               |                           |
|         | The foundations of abutments and respective wing-wall and returns                                |                           |
|         | both on the u/s and d/s side are taken to the respective scour depth                             |                           |
|         | levels assuming silt factor as 1.0. Hard soil fit for foundation is available below at +256.50m. |                           |
|         | Limiting velocity in the drainage not to exceed 2.5 m/sec.                                       |                           |
|         | The velocity in the canal trough is not to exceed twice the normal                               |                           |
|         | velocity in the canal. Find out the loss of head in the canal due to the                         |                           |
|         | crossing by total energy line method. Similarly find out the H.F.L of                            |                           |
|         | the drain u/s of the structure, keeping the normal H.F.L of the drain at                         |                           |
|         | the d/s side returns of the drainage barrel                                                      | 70M                       |
|         | ****                                                                                             |                           |
|         |                                                                                                  | Page <b>1</b> of <b>1</b> |

|     | На         | all Ticket Number :                                                                                                               |             |                              |                 |
|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|-----------------|
| L   |            |                                                                                                                                   | <b>R-</b> 1 | 7                            |                 |
| C   | 200        | Le: 7G674<br>IV B.Tech. I Semester Regular Examinations February 202                                                              | 21          |                              |                 |
|     |            | Disaster Management                                                                                                               | <u> </u>    |                              |                 |
|     |            | (Common to All Branches)                                                                                                          |             |                              |                 |
| ٨   | Max        |                                                                                                                                   | Time:       |                              | rs              |
|     |            | Answer all five units by choosing one question from each unit ( $5 \times 14 = 7$                                                 | 'U Mari     | <s )<="" td=""><td></td></s> |                 |
|     |            |                                                                                                                                   | Marks       | со                           | Blooms<br>Level |
|     |            | UNIT–I                                                                                                                            |             |                              |                 |
| 1.  | a)         | Explain briefly about how hazards can become a disaster and Summarize the                                                         |             |                              |                 |
|     |            | concept of disaster.                                                                                                              | 8M          | CO1                          | L2              |
|     | b)         | Illustrate the differences between hazard and disaster.                                                                           | 6M          | CO1                          | L2              |
| 2.  |            | OR<br>Explain the following terms in an uneducated person:                                                                        |             |                              |                 |
| 2.  |            | a) Disaster                                                                                                                       |             |                              |                 |
|     |            | b) Risk                                                                                                                           |             |                              |                 |
|     |            | c) Vulnerability<br>d) Hazard                                                                                                     | 14M         | CO1                          | L1              |
|     |            |                                                                                                                                   |             |                              |                 |
| 3.  | a)         | Illustrate the effects of the volcanoes on the environment. List out various                                                      |             |                              |                 |
|     |            | materials comes out from volcanic eruptions.                                                                                      | 7M          | CO2                          | L3              |
|     | b)         | State epicenter and focus? Create with a neat diagram? Based on depth how                                                         |             |                              |                 |
|     |            | many type types of earthquake are classified.                                                                                     | 7M          | CO2                          | L3              |
| 4.  | a)         | <b>OR</b><br>Write a short note on earthquakes. List out various materials comes out from                                         |             |                              |                 |
|     | - /        | volcanic eruptions                                                                                                                | 7M          | CO2                          | L5              |
|     | b)         | Demonstrate natural disaster and manmade disaster, what are the effects of                                                        |             |                              |                 |
|     |            | disasters on environmental health facilities and services.                                                                        | 7M          | CO2                          | L5              |
|     |            | UNIT–III                                                                                                                          |             |                              |                 |
| 5.  | a)         | Discuss the role and functions of a Disaster Manager, health effects of global                                                    | 714         |                              |                 |
|     | <b>b</b> ) | environmental change.                                                                                                             | 7M<br>7M    | CO3                          | L3<br>L3        |
|     | b)         | Explain urban disasters and climate change with suitable examples.<br>OR                                                          | 7M          | CO3                          | LC              |
| 6.  |            | List different disaster impacts and explain any four with the help of a case study.                                               | 14M         | CO3                          | L2              |
|     |            | UNIT–IV                                                                                                                           |             |                              |                 |
| 7.  | a)         | What are the steps involved in risk communication?                                                                                | 7M          | CO4                          | L4              |
|     | b)         | What are the drought control measures adopted across the globe?                                                                   | 7M          | CO4                          | L4              |
|     |            | OR                                                                                                                                |             |                              |                 |
|     | a)         | Illustrate various mitigation measures to be taken at the time of earthquakes.                                                    | 7M          | CO4                          | L3              |
|     | b)         | Elaborate the activities of panchayat raj institutions during disaster.                                                           | 7M          | CO4                          | L3              |
| 0   | 2)         | UNIT-V                                                                                                                            | 5M          | 005                          | 10              |
|     | a)<br>b)   | Discuss the important steps in relief distribution.<br>Sustainability, comment on this term and generally write how you can apply | 5M          | CO5                          | L3              |
|     | b)         | sustainability in your daily life with at least 5 examples.                                                                       | 9M          | CO5                          | L3              |
|     |            | OR                                                                                                                                |             | 200                          | _0              |
| 10. | a)         | Identify the different types of rehabilitation post disaster.                                                                     | 6M          | CO5                          | L5              |
|     | b)         | Discuss about the positive and negative impacts of construction of dams.                                                          | 8M          | CO5                          | L5              |
|     |            | ****                                                                                                                              |             |                              |                 |

|       |                                                                                                                                        |             |         |                  |        |        | ]          |         |       |                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|------------------|--------|--------|------------|---------|-------|-----------------|
| Ha    | all Ticket Number :                                                                                                                    |             |         |                  |        |        | <u> </u> [ |         | 17    |                 |
| Co    | de: 7G677                                                                                                                              |             |         |                  |        |        | l          | K-      | 17    |                 |
|       | IV B.Tech. I Semester Reg<br><b>Finite Element Met</b><br>( Civi                                                                       |             | or Ci   | ivil             |        |        |            | 2021    |       |                 |
| Мс    | ax. Marks: 70                                                                                                                          |             |         | , ,              |        |        |            | Time:   | 3 Ho  | Urs             |
|       | Answer all five units by choosing one                                                                                                  | e questio   | n fro   | me               | ach i  | unit ( | 5 x 14 =   | = 70 Ma | rks ) |                 |
|       |                                                                                                                                        | *******     |         |                  |        |        |            |         |       |                 |
|       |                                                                                                                                        |             |         |                  |        |        |            | Marks   | CO    | Blooms<br>Level |
|       | UN                                                                                                                                     | IT–I        |         |                  |        |        |            |         |       |                 |
| 1. a) | Explain the step wise procedure involv                                                                                                 | ed in Finit | e Ele   | men              | t met  | hod.   |            | 5M      | CO1   | L1              |
| b)    | 5 , 5                                                                                                                                  | •           |         |                  | bar s  | showr  | n in Fig   |         |       |                 |
|       | Assume $u = a_1 + a_2 x$ , $A = 100 \text{ mm}^2$ , E                                                                                  | = 2 x 10⁵ l | N/mm    | 1 <sup>2</sup> . |        |        |            |         |       |                 |
|       |                                                                                                                                        |             | P       | ➡<br>=101        | ٢N     |        |            |         |       |                 |
|       | 5m                                                                                                                                     |             |         |                  |        |        |            | 9M      | CO1   | L1              |
|       | O                                                                                                                                      | R           |         |                  |        |        |            |         |       |                 |
| 2. a) | Define Plane Stress and Plane Strain                                                                                                   | Condition   | with e  | exan             | nple.  |        |            | 7M      | CO1   | L2              |
| b)    | List out the equivalence and difference                                                                                                | e between   | Ray     | leigh            | - Ritz | z met  | hod and    | ł       |       |                 |
|       | finite element method.                                                                                                                 |             |         |                  |        |        |            | 7M      | CO1   | L2              |
|       | UN                                                                                                                                     | IT–II       |         |                  |        |        |            |         |       |                 |
| 3. a) | Derive the stiffness matrix for a one-di                                                                                               | mensiona    | l axia  | l bar            | elem   | nent.  |            | 9M      | CO2   | L2,L4           |
| b)    | Explain Local and Global Coordinate S                                                                                                  | Systems     |         |                  |        |        |            | 5M      | CO2   | L3              |
|       | O                                                                                                                                      | R           |         |                  |        |        |            |         |       |                 |
| 4.    | Using finite element method, derive the strain and stress, for the steel specimen equal to = $425 \text{ mm2}$ , c/s area at (2) – (2) | shown in    | fig. 10 | ). c/s           | area   |        |            |         |       |                 |
|       | (1) 0.5m                                                                                                                               | 71          | (1)     |                  |        |        |            |         |       |                 |

1.5m

- 14M CO2 L3
- 5. a) For the plane stress element shown in figure. Evaluate the stiffness matrix. Assume modulus of elasticity  $E = 210 \times 10^3 \text{ N/mm}^2$ , poisson's ratio  $\mu = 0.25$  and element thickness t=10 mm. The coordinates are given in mm.

0.5m 0.5m

(2)



10kN/

50kN

UNIT-III

(2)

9M CO3 L3,L4

Code: 7G677

|     | b) | Derive the [D] matrix for the problem of plane stress                                                                                                                                                                                                                                       | 5M  | CO3 | L3 |
|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|     |    | OR                                                                                                                                                                                                                                                                                          |     |     |    |
| 6.  | a) | Derive the shape functions and nodal load matrix for three noded triangular element                                                                                                                                                                                                         | 9M  | CO3 | L4 |
|     |    | Write down the shape functions for four noded rectangular elements using natural coordinate system                                                                                                                                                                                          | 5M  | CO3 | L4 |
|     |    | UNIT–IV                                                                                                                                                                                                                                                                                     |     |     |    |
| 7.  | a) | Fig. shows a three noded bar element in Cartesian and natural coordinates.<br>If the element is isoparametric, find the Jacobian matrix and global<br>derivatives of shape function, and hence make the [B] matrix.<br>$\xi$<br>$\xi$<br>$\xi$<br>$\xi$<br>$\xi$<br>$\xi$<br>$\xi$<br>$\xi$ |     |     |    |
|     |    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                        |     |     |    |
|     |    |                                                                                                                                                                                                                                                                                             | 9M  | CO4 | L4 |
|     | b) | Discuss the advantages of isoparametric Element                                                                                                                                                                                                                                             | 5M  | CO4 | L4 |
|     |    | OR                                                                                                                                                                                                                                                                                          |     |     |    |
| 8.  | a) | Derive the jacobian matrix for four noded quadrilateral element.                                                                                                                                                                                                                            | 9M  | CO4 | L3 |
|     | b) | What is an iso-parametric, sub-parametric and super-parametric element<br>and explain briefly with examples.                                                                                                                                                                                | 5M  | CO4 | L3 |
| 9.  |    | Derive iso- parametric formulation for 4 noded quadrilateral elements?                                                                                                                                                                                                                      | 7M  | CO5 | L5 |
|     |    | OR                                                                                                                                                                                                                                                                                          |     |     |    |
| 10. |    | Explain the different solution techniques for static loads in FEM?                                                                                                                                                                                                                          | 14M | CO5 | L5 |

\*\*\*\*

| Hall Ticket Number :                                                                                                                                                                                                                                                                                                             |       |                   |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--------|
| Code: 7G672                                                                                                                                                                                                                                                                                                                      | R-    | 17                |        |
| IV B.Tech. I Semester Regular Examinations February                                                                                                                                                                                                                                                                              | 2021  |                   |        |
| Foundation Engineering                                                                                                                                                                                                                                                                                                           |       |                   |        |
| ( Civil Engineering )<br>Max. Marks: 70<br>Answer all five units by choosing one question from each unit ( 5 x 14<br>*********                                                                                                                                                                                                   |       | e: 3 H<br>1arks ) | ours   |
| *****                                                                                                                                                                                                                                                                                                                            | Marks | со                | Blooms |
| UNIT-I                                                                                                                                                                                                                                                                                                                           | manto |                   | Level  |
| 1. How do you prepare a soil investigation report? Explain in detail.                                                                                                                                                                                                                                                            | 14M   | CO1               | L1     |
| OR                                                                                                                                                                                                                                                                                                                               |       |                   |        |
| 2. Explain the methods of soil exploration with neat sketches.                                                                                                                                                                                                                                                                   | 14M   | CO2               | L2     |
| UNIT-II                                                                                                                                                                                                                                                                                                                          |       |                   |        |
| 3. Describe any two theories of earth pressure.                                                                                                                                                                                                                                                                                  | 14M   | CO1               | L2     |
| OR                                                                                                                                                                                                                                                                                                                               |       |                   |        |
| 4. Calculate the factor of safety with respect to cohesion, of a clay slope laid at 1 in 2 to a height of 12 m, if the angle of internal friction $\emptyset = 10$ degrees, C = 25 kN/m <sup>2</sup> , what will be the critical height of the                                                                                   |       |                   |        |
| slope in this soil?                                                                                                                                                                                                                                                                                                              | 14M   | CO3               | L2     |
| UNIT-III                                                                                                                                                                                                                                                                                                                         |       |                   |        |
| 5. Explain the factors governing the selection of types of foundations.                                                                                                                                                                                                                                                          | 14M   | CO2               | L3     |
| OR                                                                                                                                                                                                                                                                                                                               |       |                   |        |
| <ul> <li>6. A strip footing 1.5m wide, depth 2 mtrs rests on the surface of a dry cohesive soil having Ø = 0 degrees, c=20 KN/m<sup>2</sup> and =1.90 tons/m<sup>3</sup>. If the water table rises temporarily up to the surface due to flooding, calculate the percentage reduction in the ultimate bearing capacity</li> </ul> |       |                   |        |
| of the soil. Assume N <sub>c</sub> = 5.7, Nq=1, N <sup><math>\gamma</math>=0.</sup>                                                                                                                                                                                                                                              | 14M   | CO4               | L3     |
|                                                                                                                                                                                                                                                                                                                                  |       |                   |        |
| UNIT-IV                                                                                                                                                                                                                                                                                                                          |       |                   |        |
| <ol> <li>Explain the procedure involved in the standard penetration test with<br/>sketch.</li> </ol>                                                                                                                                                                                                                             | 14M   | CO2               | L2     |
| OR                                                                                                                                                                                                                                                                                                                               |       |                   |        |
| <ol> <li>a) Compare the merits and demerits of Terzaghis method and<br/>Skemptons method of calculating bearing capacity of soils.</li> </ol>                                                                                                                                                                                    | 7M    | CO3               | L2     |
| <ul> <li>b) Briefly explain types of failure in soil (i) General shear failure</li> <li>(ii) Local shear failure</li> </ul>                                                                                                                                                                                                      | 7M    | CO3               | L2     |
| 9. How do you estimate the pile load capacity by pile load test?<br>OR                                                                                                                                                                                                                                                           | 14M   | CO2               | L2     |
| 10. Explain the method of determining group capacity of piles by any two methods.                                                                                                                                                                                                                                                | 14M   | CO2               | L2     |

|     | На         | II Ticket Number :                                                                                 |          |                    |                 |
|-----|------------|----------------------------------------------------------------------------------------------------|----------|--------------------|-----------------|
| L   | <u> </u>   |                                                                                                    |          | R-17               |                 |
|     |            | le: 7GA71<br>IV B.Tech. I Semester Regular Examinations February                                   | 2021     |                    |                 |
|     |            | Human Resource Management                                                                          | 2021     |                    |                 |
|     |            | ( Common to All Branches )                                                                         |          |                    |                 |
|     | Ma         | x. Marks: 70<br>Answer all five units by choosing one question from each unit ( 5 x 14<br>******** |          | e: 3 Ho<br>1arks ) | Jrs             |
|     |            |                                                                                                    | Marks    | СО                 | Blooms<br>Level |
|     |            | UNIT–I                                                                                             |          |                    |                 |
| 1.  | a)         | Define the nature and scope of Human Resource Management                                           | 7M       | 1, 2               | 1               |
|     | b)         | What are the different functions of HRM                                                            | 7M       | 1, 2               | 4               |
|     |            | OR                                                                                                 |          |                    |                 |
| 2.  | ,          | What is HRM? Explain about Competitive Challenges influencing HRM.                                 | 7M       | 1, 2               | 4               |
|     | b)         | Differentiate Personnel Management and HRM                                                         | 7M       | 1, 2               | 5               |
| •   | ,          |                                                                                                    |          |                    |                 |
| 3.  | a)         | Define HRP. Explain HRP need and importance in an organization.                                    | 7M       | 6, 7, 8            | 1               |
|     | b)         | Explain about different Barriers to HRP.                                                           | 7M       | 6, 7, 8            | 2               |
|     | - )        |                                                                                                    |          |                    | 4               |
| 4.  | ,          | Define job analysis. Explain the different methods of JE and its process                           | 7M<br>7M | 6, 7, 8            | 1               |
|     | b)         | Define Job Design and its importance in an organization.                                           | 7M       | 6, 7, 8            | 1               |
| 5   | a)         | <b>UNIT-III</b><br>If you are the HR Manager, what type of recruiting methods is using to          |          |                    |                 |
| 5.  | a)         | recruit for Manufacturing and for services industry?                                               | 7M       | 1, 4,              | 2               |
|     | b)         | Define process of recruitment.                                                                     | 7M       | 1, 4,              | 1               |
|     | - /        | OR                                                                                                 |          | ., .,              |                 |
| 6.  | a)         | What is recruitment? List out the process of recruitment.                                          | 7M       | 1, 4,              | 4               |
|     | ,<br>b)    | "A well-thought-out orientation program is essential for all new                                   |          | -, -,              |                 |
|     | ,          | employees, whether they have experience or not". Explain why you                                   |          |                    |                 |
|     |            | agree or disagree with the above statement.                                                        | 7M       | 1, 4,              | 2               |
|     |            | UNIT–IV                                                                                            |          |                    |                 |
| 7.  | a)         | List and briefly explain about Training Methods                                                    | 7M       | 4, 5               | 1               |
|     | b)         | What is the need of training an employee in an organization?                                       | 7M       | 4, 5               | 4               |
|     |            | OR                                                                                                 |          |                    |                 |
| 8.  | a)         | Is an employee should train. If yes list out the advantages and                                    | 784      |                    | 4               |
|     | <b>៤</b> ) | disadvantages of training.                                                                         | 7M<br>7M | 4, 5               | 4               |
|     | b)         | Define different career stages.                                                                    | 7M       | 4, 5               | 1               |
| ٥   | a)         | <b>UNIT-V</b><br>Define what Employee Compensation is and list out the factors                     |          |                    |                 |
| 5.  | aj         | influencing Employee Compensation.                                                                 | 7M       | 3, 4, 5            | 1               |
|     | b)         | Explain the need of IR with respect to HRM                                                         | 7M       | 3, 4, 5            | 2               |
|     | ,          | OR                                                                                                 |          | , , -              |                 |
| 10. | a)         | Describe the pros and cons of any four Performance Appraisal tools.                                | 7M       | 3, 4, 5            | 2               |
|     | b)         | Explain different methods of Performance Appraisal.                                                | 7M       | 3, 4, 5            | 2               |
|     |            | ****                                                                                               |          |                    |                 |

|    |             | Hall Ticket Number :                                                                                                                                       |                                             |                                               |                            |               |                    |    | -               |
|----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------|---------------|--------------------|----|-----------------|
|    |             |                                                                                                                                                            |                                             |                                               |                            |               | R-17               |    |                 |
|    |             | ode: 7G673<br>IV B.Tech. I Semester I                                                                                                                      | Reaular                                     | Fxaminat                                      | ions Febr                  | uary 2021     |                    |    | _               |
|    |             |                                                                                                                                                            | -                                           | Enginee                                       |                            | 00172021      |                    |    |                 |
|    |             | -                                                                                                                                                          |                                             | neering )                                     | •                          |               |                    |    |                 |
|    | Μ           | lax. Marks: 70<br>Answer all five units by choosing                                                                                                        | one que                                     |                                               | each unit (                |               | me: 3 ⊦<br>Marks ) |    | 5               |
|    |             |                                                                                                                                                            |                                             |                                               |                            |               | Marks              | со | Blooms<br>Level |
|    |             |                                                                                                                                                            | UNIT-I                                      |                                               |                            |               |                    |    |                 |
| 1. | a)          | Briefly outline the highway development                                                                                                                    | ent in India                                | a and explai                                  | n the neces                | sity followed |                    |    | 0               |
|    | <b>b</b> .) | by objectives of highway planning.                                                                                                                         | lien in hiel                                | 00                                            |                            |               | 7M                 | 1  | 3               |
|    | b)          | The speeds of overtaking and overta<br>If the acceleration of the overtaking<br>safe passing sight distance for (i) One                                    | vehicle is                                  | 2.5kmph pe                                    | er second, o               |               |                    | 1  | 4               |
|    |             |                                                                                                                                                            | OR                                          |                                               |                            |               |                    |    |                 |
| 2. | a)          | Total no. of towns as per 981 census                                                                                                                       | t formula a<br>= 80,000s<br>= 86            | nd the follov<br>q.km                         | wing data:                 | a by the yea  |                    |    |                 |
|    |             | •                                                                                                                                                          | •                                           | er 100 sq.kn                                  |                            |               | 7M                 | 1  | 4               |
|    | b)          | A vertical summit curve is formed we another ascending gradient of 1 in provide the required sight distance (S                                             | 100. Find                                   | the length                                    | of the sum                 | mit curve to  | )                  | 1  | 3               |
|    |             |                                                                                                                                                            | UNIT–II                                     |                                               |                            |               |                    |    |                 |
| 3. | a)          | Explain the relationship between spe                                                                                                                       | ed, travel t                                | ime, volume                                   | e, density ar              | nd capacity.  | 7M                 | 2  | 3               |
|    | b)          | A fixed time 2 – phase is to be provide<br>and an East – West where only straig<br>flows from the various arms and their                                   | ht – ahead                                  | traffic is per                                | mitted. The                |               |                    |    |                 |
|    |             |                                                                                                                                                            | North                                       | South                                         | East                       | West          |                    |    |                 |
|    |             | Design Hourly flow(q) in PCU/hr                                                                                                                            | 800                                         | 400                                           | 750                        | 1000          |                    |    |                 |
|    |             | Saturation flow (s) in PCU/hr                                                                                                                              | 2400                                        | 2000                                          | 3000                       | 3500          | 7M                 | 2  | 4               |
|    |             |                                                                                                                                                            | OR                                          |                                               |                            |               |                    |    |                 |
| 4. | a)          | What are the various types of traffic n                                                                                                                    | narking co                                  | mmonly use                                    | d? What are                | e the uses o  |                    | ~  | 0               |
|    | b)          | each?<br>Two vehicles A and B of equal weight,                                                                                                             | approach                                    | ing from cros                                 | ss roads (at               | right angles  | 7M                 | 2  | 3               |
|    | ~)          | collide with each other. They skid throu<br>20m and 35m after collision. If the direct<br>are 45 <sup>o</sup> and 130 <sup>o</sup> with original path resp | ugh distanc<br>ctions of sk<br>pectively, c | es 30m and<br>idding vehicl<br>alculate the c | 20m before<br>es A and B a | collision and | l<br>n<br>o        | 0  | 4               |
|    |             | vehicles before the applications of brak                                                                                                                   |                                             | e t= 0.55.                                    |                            |               | 7M                 | 2  | 4               |
| 5. | a)          | With a neat sketch explain the confli<br>uncontrolled intersections. Bring out                                                                             | •                                           |                                               | •                          | ••            |                    |    |                 |
|    |             | the collision                                                                                                                                              |                                             |                                               | -                          | -             | 7M                 | 3  | 6               |
|    | b)          | Discuss about importance of channe<br>at grade intersections with neat sketc                                                                               |                                             | xplain how it                                 | t is provided              | d at differen | t<br>7M            | 3  | 4               |
|    |             |                                                                                                                                                            | OR                                          |                                               |                            |               |                    | 0  |                 |
|    |             |                                                                                                                                                            |                                             |                                               |                            |               |                    |    |                 |

6. a) The width of approaches for a rotary intersection is 12 m. The entry and exit width at the rotary is 10 m. Table below gives the traffic from the four approaches, traversing the intersection. Find the capacity of the rotary.

|     |    | Approach                                 | Left turn                      | Straight                                | Right turn                                                                |      |   |   |
|-----|----|------------------------------------------|--------------------------------|-----------------------------------------|---------------------------------------------------------------------------|------|---|---|
|     |    | North                                    | 450                            | 700                                     | 320                                                                       |      |   |   |
|     |    | South                                    | 360                            | 350                                     | 400                                                                       |      |   |   |
|     |    | East                                     | 245                            | 420                                     | 510                                                                       |      |   |   |
|     |    | West                                     | 345                            | 530                                     | 560                                                                       | 7M   | 3 | 4 |
|     | b) | Explain grade separa                     | ated intersection, the         | e advantageous and                      | limitations.                                                              | 7M   | 3 | 3 |
|     |    |                                          | UN                             | NIT-IV                                  |                                                                           |      |   |   |
| 7.  |    | • •                                      | s of sub-grade s               | •                                       | r of soil? What are the<br>ne identification and                          | 14M  | 4 | 6 |
|     |    |                                          |                                |                                         |                                                                           | 1411 | 4 | 0 |
| 0   | -) | Discuss the desirable                    |                                |                                         | h ite en esilientiene fer                                                 |      |   |   |
| 8.  | a) | suitability in road cor                  | • •                            | aggregate along wit                     | h its specifications for                                                  | 7M   | 4 | 3 |
|     | b) | Explain the test proc<br>grade strength  | cedure for conduct             | of CBR test for dete                    | ermination of soil sub-                                                   | 7M   | 4 | 3 |
|     |    |                                          | U                              | NIT-V                                   |                                                                           |      |   |   |
| 9.  | a) | Explain the design fa                    | actors considered in           | flexible pavement.                      |                                                                           | 7M   | 5 | 3 |
|     | b) | having thickness of 2                    | $E = 3 \times 10^5 \text{ kg}$ | $/ \text{ cm}^2$ , $\mu = 0.15$ , desig | joint of CC pavement<br>gn wheel load 5100kg,<br>Fb = 100 kg / $cm^2$ and |      |   |   |
|     |    | $k = 7.1 \text{ kg} / \text{cm}^3$ . Ass | ume other data suita           | ably as per IRC                         | -                                                                         | 7M   | 5 | 6 |
|     |    |                                          | C                              | DR                                      |                                                                           |      |   |   |
| 10. | a) | Explain the design o                     | f flexible pavement u          | using CBR and GI m                      | ethod                                                                     | 7M   | 5 | 4 |
|     | b) | temperature differe                      | ntial of 10.5 °C.              | Assuming that k                         | ck, is subjected to a $= 50.0 \text{ MN/m}^3$ and the interior, edge and  |      |   |   |
|     |    | corner of the slab. Ta                   | ake the radius of cor          | ntact as a = 150 mm<br>*****            | -                                                                         | 7M   | 5 | 5 |

|     | ŀ          | Hall Ticket Number :                             |         |                  |           |           |       |                     |         |       |        |         |         |         |                 |              |
|-----|------------|--------------------------------------------------|---------|------------------|-----------|-----------|-------|---------------------|---------|-------|--------|---------|---------|---------|-----------------|--------------|
|     | Co         | ode: 7G676                                       |         |                  |           |           |       |                     |         |       |        |         | _       |         | R-17            |              |
|     |            | IV B.Tech.                                       | l Ser   | nes              | ter I     | Regi      | ular  | Exai                | minc    | itio  | ns F   | ebr     | uary    | 202     | 1               |              |
|     |            |                                                  |         |                  |           | -         |       | gine                |         | -     |        |         |         |         |                 |              |
|     | <b>١</b> ٨ | ax. Marks: 70                                    |         |                  | (         | Civil     | Eng   | inee                | ring )  |       |        |         |         | ті      | me: 3 Hou       | irc          |
|     | 1010       | Answer all five units                            | s by c  | choc             | osing     | one       | que   | estion              | from    | ea    | ch u   | nit (   | 5 x 14  |         |                 | // 3         |
|     |            |                                                  |         |                  |           |           | ****  | ****                |         |       |        |         |         |         |                 | Blooms       |
|     |            |                                                  |         |                  |           |           |       |                     |         |       |        |         |         |         | Marks Co        | C Level      |
| 1   | $\sim$     | Explain the various ty                           |         |                  |           |           |       |                     | ian of  | : hia | hway   | , bric  |         |         | 714             |              |
| ١.  | a)<br>b)   | Explain the various ty<br>Explain the various st | •       |                  |           | •         |       |                     | •       | -     |        |         | •       |         | 7M<br>7M        | BT-1<br>BT-2 |
|     | 0)         |                                                  | 000 11  | 10010            |           | 0         |       | jii oi i            | anwa    | , 511 | ugu    |         | tun.    |         | 7 101           |              |
| 2.  |            | Design a box culvert v                           | with th | ne fo            | llowii    | ng pa     | rticu | lars:               |         |       |        |         |         |         |                 |              |
|     |            | Inside dimensions: 3                             |         |                  |           |           |       |                     |         |       |        |         | •       |         |                 | DT 0         |
|     |            | 18kN/m <sup>3</sup> ; Angle of rep               | ose:    | 30°;             | -         |           |       | o conc              | crete a | and   | Fe41   | 5 gra   | ade st  | eel.    | 14M             | BT-3         |
| 3.  |            | Sketch the typical reir                          | oforce  | mor              |           | UNIT      |       | o doci              | k elah  | of    | a rair | ofore   | ed co   | ocrati  | 2               |              |
| 0.  |            | culvert with a clear sp                          |         |                  |           |           |       |                     |         |       |        |         |         |         | <br>14M         | BT-4         |
|     |            |                                                  |         |                  |           | 0         |       |                     |         |       |        |         |         |         |                 |              |
| 4.  |            | Design a RCC T-bea                               | m giro  | der f            | for a     | natic     | onal  | highw               | ay br   | idge  | to s   | suit tl | he foll | owing   | g               |              |
|     |            | data: Clear width of R                           |         | -                |           |           |       |                     |         |       |        |         | •       |         |                 |              |
|     |            | Live load: IRC Class<br>main girders: 4; Mater   |         |                  |           |           |       |                     | •       |       |        | mm;     | ; NUM   | ber o   | 14M             | BT-4         |
|     |            |                                                  |         | 1120             |           |           |       |                     |         |       |        |         |         |         |                 |              |
| 5.  |            | A plate girder is to be                          | desig   | gned             |           | -         |       | k to s              | suit th | e fo  | lowir  | ng da   | ata: Sp | ban o   | f               |              |
|     |            | the bridge: 20 m; Dea                            |         |                  |           |           |       |                     |         |       |        |         |         | •       |                 |              |
|     |            | track: 1964 kN; E.U.L.                           |         |                  |           |           | tions | per tr              | ack: 2  | 2168  | kN.    | Desi    | gn the  | e plate | ə<br>14M        | BT-5         |
|     |            | girder to confirm to the                         | eirc    | 1040             | lings     | 0         | R     |                     |         |       |        |         |         |         | 14101           | DI-0         |
| 6.  |            | Design a composite b                             | ridae s | supe             | er stru   |           |       | l subs <sup>.</sup> | tructu  | re w  | ith th | ne fol  | lowinc  | ı data  | 1:              |              |
|     |            | Span: 18 m; Number of                            | •       | •                |           |           |       |                     |         |       |        |         |         | •       |                 |              |
|     |            | concrete and Fe415 b                             |         | •                |           |           |       |                     |         |       |        |         |         |         |                 |              |
|     |            | stream: 992 m; HFL c<br>Hard soil for foundation |         |                  |           |           |       | op lev              | vel of  | the   | strea  | am b    | und: 9  | 95 m    | ;<br>14M        | BT-5         |
|     |            |                                                  | JI 13 0 | (vanc            |           |           |       |                     |         |       |        |         |         |         | 1 - 1 1 1       | DIO          |
| 7.  |            | Design a mild steel ro                           | cker b  | beari            |           | -         |       | ting th             | ne sup  | bers  | truct  | ure r   | eactiv  | e load  | d               |              |
|     |            | of 1200 kN. Allowable                            | e pres  | sure             | e on      | beari     | ng b  | lock:               | 3.8 M   | Pa;   | Perr   | nissi   | ble be  | ending  | g               |              |
|     |            | stress (0.66 <i>f<sub>y</sub></i> ): 165 N       | IPa; P  | erm              | issibl    | le bea    | aring | stres               | s: 100  | ) MF  | Pa; P  | ermi    | ssible  | shea    |                 |              |
|     |            | stress: 100 MPa.                                 |         |                  |           | 0         | D     |                     |         |       |        |         |         |         | 14M             | BT-3         |
| 8.  |            | What are the steps in                            | volve   | d in             | the c     |           |       | elasto              | meric   | : pa  | d bea  | arina   | ? Exp   | lain ir | า               |              |
| 0.  |            | detail with equations.                           |         |                  |           |           |       |                     |         | Pon   |        |         | ,,,,    |         | 14M             | BT-1         |
|     |            |                                                  |         |                  |           | UNIT      |       |                     |         |       |        |         |         |         |                 |              |
| 9.  |            | Explain different types                          | s of pi | ers ۱            | with r    |           |       | hes.                |         |       |        |         |         |         | 14M             | BT-2         |
| 10  | c)         | Mrite chaut concret                              |         | o c <sup>4</sup> | 0 h · · 4 | 0<br>mont |       |                     |         |       |        |         |         |         |                 |              |
| ιU. | a)<br>b)   | Write about general fe<br>Draw the sketch of     |         |                  |           |           |       | cal de              | ataile  | alor  | na w   | ith it  | o otri  | icture  | 7M              | BT-2         |
|     | 5)         | components.                                      | abuur   | iont             | 510       | wing      | Ghu   |                     | 70113   | aioi  | '9 W   | 1       | .5 511  |         | 7M              | BT-1         |
|     |            | -                                                |         |                  |           |           | ***   | **                  |         |       |        |         |         |         |                 |              |
|     |            |                                                  |         |                  |           |           |       |                     |         |       |        |         |         |         | Page <b>1</b> o | of <b>1</b>  |