Code: 20 A 25 OF	O								R-20
Code: 20A37OT	O			•		,		_	R-20

	IV B.Tech. I Semester Regular Examinations November 2	023		
	Total Quality Management			
	(Mechanical Engineering)			
	Max. Marks: 70	Time: 3	Hours	
	Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks .			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
	(Compulsory question)			
	1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)	CO	BL	
	a) What is the relationship between 'quality' and 'price'?	CO1	BL1	
	b) What is meant by Quality council?	CO2	BL1	
	c) What is meant by Customer retention?	CO3	BL2	
	d) How Benchmarking is considered in Quality management?	CO4	BL1	
	e) How Quality auditing is done?	CO5	BL1	
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12	= 60 Ma	rks)	
		Marks	CO	BL
	UNIT-I			
2.	Explain the basic concepts of Quality management.	12M	CO1	BL4
	OR			
3.	What are Quality costs? Explain the various techniques of Quality costs.	12M	CO1	BL5
	UNIT-II			
4.	Discuss the importance of strategic planning in TQM.	12M	CO2	BL4
	OR			
5.	Describe the Barriers of TQM Implementation in detail.	12M	CO2	BL5
	UNIT-III			
6.	What is meant by 'Quality Management'? Discuss the components of			
	'Quality Management'	12M	CO3	BL4
	OR			
7.	Explain the seven basic principles of Quality Management.	12M	CO3	BL4
	UNIT-IV			
8.	Explain in detail about 'Quality function deployment,	12M	CO4	BL5
	OR			
9.	Explain the various stages of FMEA process.	12M	CO4	BL5
	UNIT-V			
10.	Discuss the significance of ISO 9000: 2000 Quality System in Quality Management.	12M	CO5	BL4
	OR			
11.	Describe the Requirements and Benefits of Quality control systems.	12M	CO5	BL4
	*** End ***			

		III Ticket Number :	R-20	
	Cod	de: 20A37ET IV B.Tech. I Semester Regular Examinations November 20)))	
		Non-Conventional Sources of Energy	725	
		(Mechanical Engineering)		
	Ма	x. Marks: 70 *******	Time: 3 Hou	rs
	Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)		
		2. In Part-A, each question carries Two marks.		
		3. Answer ALL the questions in Part-A and Part-B		
		PART-A		
1 1		(Compulsory question)	00	DI
		er all the following short answer questions $(5 \times 2 = 10M)$	CO	BL
	•	olain the term conversion effectiveness.	CO1	L1
		t the various losses in a flat plate collector.	CO2	L1
		ite down the advantages and limitations of the W		
	•	wer energy.	CO3	L1
		scuss the principle of operation of geothermal system.	CO4	L1
e)	Exp	olain the principle of direct energy conversion.	CO5	L1
		PART-B		
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$		O BL
		UNIT-I	Marks C	O BL
2.	a)		า	
	,	inclined surface. Show that a horizontal surface		
		receives no ground-reflected radiation.	6M	1 2
	b)	Define solar constant. What is its standard value	6M	1 1
	- /	OR		
3	a)	Define the following:		
0.	u)	i) Latitude ii) Declination angle iii) Surface azimutl		
		angle iv) Hour angle v) Zenith angle.	6M	1 1
	h)			' '
	D)	Write short notes on spectral distribution of extra terrestrial radiation		4 0
		UNIT-II	6M	1 2
1	a)		0	
٦.	a)	Explain with classification the working of flat plate and concentrating solar collectors with the near		
		diagrams	6M	2 1
	h)	_		2 1
	U)	Explain briefly the parameters affecting the performance of flat plate collectors.	е 6М	0 4
		performance of flat plate collectors.		2 1
			Page 1 of	t 7

Code: 20A37ET

OR

5.	a)	Describe solar pond for solar energy collection and storage.	6M	2	2
	b)	With the neat diagram explain the working of the	Olvi	2	2
	ω,	solar photovoltaic conversion system. Draw I-V			
		characteristics.	6M	2	2
		UNIT-III			
6.	a)	Classify the wind energy systems and explain their working			
		with neat sketch.	6M	3	1
	b)	Explain, how do you calculate the wind power?	6M	3	1
		OR			
7.	a)	Discuss the various factors affecting the performance of digesters and with the sketch explain the working of	014		
		Updraught, Downdraught and Cross draught gasifiers.	6M	3	1
	b)	Discuss about Betz limit.	6M	3	1
Q	2)	UNIT-IV Define Lamberts law. Explain the working of high-			
Ο.	a)	level reservoir machine and dolphin type machine.	6M	4	2
	b)	Describe in detail the double basin system with the			
		neat sketch.	6M	4	2
		OR			
9.	a)	Explain how ocean tides are generated and how the			
		power can be tapped? Discuss the limitations of this method.	6M	4	1
	b)	Describe the single basin arrangement in tidal power	CN4		
		generation. UNIT-V	6M	4	1
10	a)	Define the following: Seebeck, Peltier and Joule			
	u,	Thomson effects.	6M	5	1
	b)	Distinguish between Fuel cell and a Battery	6M	5	2
	,	OR		J	_
11.	a)	Describe the working principle of operation of MHD			
	/	generator with neat diagram	6M	5	1
	b)	Discuss the advantages, disadvantages, and applications of Fuel Cells? *** End ***	6M	5	1
		EIIU			

	Hall Ticket Number :														
	Code: 20A37AT										_		R-20		
	IV B.Tech.	I Sem	ester	Reg	ular	Exa	min	atio	ns N	love	embe	er 202	3		
			-	era											
	Max. Marks: 70		(ME	cha		****		enng	3)			Tin	ne: 3 H	ours	
	Note: 1. Question Pape	er cons	ists of	two p	oarts	(Par	't-A a	and P	art-	В)					
	2. In Part-A, each	•													
	3. Answer ALL the	e ques	tions ir	ı Parı		na P : RT-A	art-B	•							
			(Comp			estio	n)							
1. <i>A</i>	nswer <i>all</i> the followi	ing sh	ort ar	ารพย	er qu	ıesti	ons		(5)	X 2	= 10	M)		СО	BL
a)	Show unboundedne	ss for	LPP	usin	g gr	aph	ical	met	hod					1	L2
b)	What are the differe	ences	betw	een	Trai	nspo	ortat	ion	mod	del a	and A	Assig	nment		
	model													2	L1
•	Briefly explain Two-				•	_	e.							3	L1
,	What is Monte Carlo					ue								4	L1
e)	State Bellman's Prin	ciple	of opt	timal	-									5	L1
	Answer five question	ns by	choosi	na o		<u>RT-B</u> uesti		om (each	uni	t (5 x	12 = 6	60 Marks	s)	
	Allower Ave queene	ilo by	0110001	ng o	iio q	uooti		•	Juoi	. u	. (0 x	12 - 0	Marks	-	BL
					UN	IIT–									
2.	A small manufact		-												
	men and makes				•		•								
	ordinary model. T work by a skilled		•						•						
	The ordinary mo						•								
	hours work by a	semi-	-skille	d ma	an.	Ву	unio	n ru	ıles	no	man	can			
	work more than 8		-	-											
	of deluxe model Formulate and so							•							
	profit.	ive by	y usiii	y yr	аріп	Cari	meu	iou	10 11	iiu i	Παλιι	mum	12M	1	L3
	•			0	R									-	
3.	Solve the following	g prol	blem ı	using	g Big	g-M	met	hod	:						
	Maximize $Z = 4$	4X ₁ +	5X ₂ +	2X ₃	3										
	Subjected to	2X ₁ +	X ₂ +λ	〈 3	10,										
		•	3X ₂ +	Ŭ											
		X ₁ +	X ₂ +	_	,										
			X	(_{1,} X ₂	, X ₃	0							12M	1	L3

Code: 20A37AT

UNIT-II

4. A product is produced by 4 factories A, B, C and D. The unit production costs in them are Rs 2, Rs 3, Re 1 and Rs 5 respectively. Their production capacities are: Factory A − 50 units, B − 70 units, C − 30 units and D − 50 units. These factories supply the product to 4 stores, demands of which are 25, 35, 105 and 20 units respectively. Unit transport cost in rupees from each factory to each store is given in the table below:

stores 2 1 3 4 2 4 6 11 Α В 7 10 8 5 **Factories** C 13 3 9 12 D 4 6 8 3

Determine the extent of deliveries from each of the factories to each of the stores so that the total production and transportation cost is minimum.

12M 2 L3

OR

5. A salesman wants to visit cities 1, 2, 3 and 4. He does not want to visit any city twice before completing the tour of all the cities and wishes to return to his home city, the starting station. Cost of going from one city to another in rupees is given in table. Find the least cost route.

12M 2 L3

6. The following mortality rates have been observed for a certain type of light bulbs:

Week	1	2	3	4	5
% of failure by week end	10	25	50	80	100

There are 1000 bulbs in use and it costs Rs 2 to replace an individual bulb which has burnt out. If all bulbs were replaced simultaneously, it would cost 50 paise per bulb. It is proposed to replace all the bulbs at fixed intervals, whether or not they have burnt out, and to continue replacing burnt out bulbs as they fail. At what intervals should all the bulbs be replaced?

12M 3 L3

Code: 20A37AT

OR

7. Solve the following 2 X 4 game by graphical method. Given matrix is pay off matrix of player A.

			UNI	IT–IV	
Player A	2	5	4	3	7
Playor A	1	3	3	4	0
		1	2	3	4
			Play	yer B	

12M 3 L3

- 8. A repair shop attended by a single mechanic has an average of 4 customers per hour who bring small appliances for repair. The mechanic inspects them for defects and quite often can fix them right away or otherwise render a diagnosis. This takes him 6 minutes on the average. Arrivals are Poisson and service time has the exponential distribution.
 - i. Find the proportion of time during which the shop is empty.
 - ii. Find the probability of finding at least one customer in the shop.
 - iii. The average number of customers in the system.
 - iv. The average time, including service, spent by a customer.

12M 4 L3

9. The arrival of customers and service times of customers are having the following distribution. Simulate this queueing system for 10 periods by using the following random numbers and calculate mean waiting time and mean queue length.

		•	
Inter arrival time (min)	Probability	Service time (min)	Probability
5	0.15	7	0.10
6	0.35	8	0.35
7	0.40	9	0.45
8	0.10	10	0.10

Random numbers for arrival: 36, 60, 82, 14, 14, 62, 62, 10, 55, 14

Random numbers for service: 34, 35, 31, 62, 48, 73, 88, 70, 19, 40.

12M 4

L3

UNIT-V

10. The demand for a product is 2400units over 360 days. The storage cost is 0.06% of the unit cost of the product and the ordering cost is Rs 35000/-. Find the optimal order quantity if the price breaks are as follows:

Quantity	Unit Cost
0 q < 1000	Rs 1000/-
1000 q < 4000	Rs 925/-
4000 q	Rs 850/-

12M 5 L3

OR

11. Use dynamic programming to solve the following LPP:

Maximize $Z = 3X_1 + 5X_2$.

Subject to $X_1 = 4$, $X_2 = 6$ $3X_1 + 2X_2 = 18$

 $X_{1}, X_{2} = 0$

12M 5 L3

Hall Ticket Number :						P 20
Code: 20A37IT						R-20

	C	Due. 20A3/II			
		IV B.Tech. I Semester Regular Examinations November 2	2023		
		Power Plant Engineering			
		(Mechanical Engineering)	- : 0.1		
	Μ	ax. Marks: 70 ******	Time: 3 I	Hours	
	No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two marks.			
		3. Answer ALL the questions in Part-A and Part-B			
		PART-A			
		(Compulsory question)			
	1.	Answer <i>all</i> the following short answer questions $(5 \times 2 = 10M)$	CO	BL	
	а) Write the different types of fuels used in the Thermal Power Plant.	CO	1 L2	
	b) Why cooling Towers are necessary in Thermal Power Plant?	CO	2 L2	
	С) Explain Internal Combustion Engine	CO	3 L2	
	d) Examine the necessity of Nuclear power plant in India to make a Develo	ped		
		Nation.	CO	4 L4	
	е) What do you mean by Pollution and Pollution Standard	CO	5 L2	
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 0$)	60 Marks)	
			Marks	CO	BL
		UNIT-I			
2.		Explain Different type of Coal Handling systems of Thermal Power Plant.	12M	CO1	L
		OR			
3.		Coal is an important Fossil Fuel, Justify the Coal Storage System.	12M	CO1	L
		UNIT-II			_
4.		Differentiate overfeed and underfeed fuel beds with it advantages.	12M	CO2	L
		OR			
5.		Illustrate the Spreader Stokers with its functional parameters.	12M	CO2	L
		UNIT-III			
6.		Describe the Plant lay out and functions of the components of diesel power			
		plant.	12M	CO3	L
		OR			
7.		Derive the Principles of working of open cycle gas turbine with diagram.	12M	CO3	L
		UNIT-IV			
8.		Explain with diagram typical layouts of Hydro Electric Power Plant.	12M	CO4	L
		OR			
9.		Illustrate breeding and fertile materials in context to Nuclear Power Plant.	12M	CO4	L:
		UNIT-V			
10.		Differentiate Vertical Axis Wind Turbine (VAWT) and Horizontal Axis Win			
		Turbine (HAWT)	12M	CO5	L
		OR			
11.	a)	Examine and comments in your words necessity about power plant economics.	. 6M	CO5	L₄
	b)	Define the following i) Maximum demand ii) Average Load iii) Load factor.	6M	CO5	L2
		*** End ***			

				<u> </u>							1			
H	fall Ticket Number :												20	
Co	de: 20A27MT											I	R-20	
	IV B.Tech. I	Semes (Electr		Sn	nart	Gri	d				nber	2023		
Mo	ax. Marks: 70	LIGCII	icui c		****		C3 LII	gii id	56111	19)		Time	e: 3 H	lours
Vo	te: 1. Question Paper			•		•		d Pa	art-B)				
	2. In Part-A, each of 3. Answer ALL the	•			- A an	ıd Pa								
			(C	ompi	<u>PAR'</u> ulsor		estion))						
_	L. Answer <i>all</i> the fol	llowing	-	-			-		(5)	X 2 =	= 10M)	СО	BL
	a) What is smart m	•				•			`			•	CO1	2
	b) What is the func	tion of P	MU?									C	002	1
	c) Mention the appl	lications	of m	icro (arid							(03	3
	d) List the types of				_	ge s	ystem	ıs					CO4	1
	e) What is meant b			•		•	•						CO5	2
	Answer five questio	ns by ch	oosin		PAR e que		ı from	eac	h un	it (5	x 12 =	= 60 M :	arks)	
	,	J	•	0	•								Marks	СО
					UNI	T–I							Marko	
a)	Briefly explain the Ev	volution	of Ele	ctric	Grid								6M	CO1
o)	Write the Need of Sr	mart Grid	t		0.5	,							6M	CO1
a)	Give the compariso	n betwe	en co	nver	OF ntiona		ıd sma	art g	ırid.				6M	CO1
o)	Explain about the va	arious c	ompo	nent	s of s	smaı	rt met	er.					6M	CO1
	·		•		UNIT	Г–ІІ								
a)	What is GIS? Discu	ss how	it is u	seful	l in sı	mart	grid.						6M	CO2
o)	Mention the applica	tions of	IED's	in p									6M	CO2
	MAZE - I - d - d - d				OF	≺								
	Write short note on (i) Phasor measur	ring unit	(ii) S)						12M	CO2
a)	Write a short note or	nlastic	solar		UNIT	-111							6M	CO3
a) O)	Explain the concept	•		JUIJ	•								6M	CO3
-)	Explain the concept	J. 111101C	, giiu.		OF	₹							OIVI	503
a)	Explain about the co	ntrol of r	micro	arid.		•							6M	CO3
))	Discuss about the fu			•			_						6M	CO3
	Give the technical	compari	son h		UNIT		US ele	ectri	cal e	enero	ıv sto	rage		
	technologies.	Jonipun	JJ11 N			. 4.10	010	- Jul 10	-a. c	9	,, 510	. ~ g ~	12M	CO4
					OF	₹								
	Write short note on													
	(i) Double layer ca	pacitor	(ii) Th	nerma	al sto	rage	syste	ms					12M	CO4
					UNIT	-V								
a)	Discuss about Neigh												6M	CO5
၁)	Explain the concept	of cloud	comp	outing	•		t grid.						6M	CO5
					OF									
	Explain in detail abou	ut the co	mmui		ion te ** En		•	s in	sma	rt grid	d.		12M	CO5

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Hall Ticket Number :			
	-20		
IV B.Tech. I Semester Regular Examinations November 2023			
Additive Manufacturing			
(Mechanical Engineering) Max. Marks: 70 Time	e: 3 Hou	ro	
Max. Marks. 70	, з поо	15	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks.3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question)			
1. Answer <i>all</i> the following short answer questions $(5 \times 2 = 10M)$		СО	BL
a) State the advantages of rapid prototyping over conventional prototyping		1	2
b) "Stereolithography requires support structures, whereas Selective	laser		
sintering does not" Explain why"?		2	4
c) Provide examples of industries and applications where SLS has	found		_
significant utility		3	2
d) What is the role of scanner in Reverse Engineeringe) State the common pre-processing errors in RP technologies		4 5	1 1
PART-B		J	ı
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Ma}$	rks)		
	Marks	СО	BL
UNIT-I			
a) What are various processes used for rapid prototyping? Explain any two of them in brief	6M	1	1
b) Differentiate between Additive Manufacturing and Subtractive	Olvi	'	ı
Manufacturing. Explain when do you choose what.	6M	1	3
OR		•	Ü
3. a) What is the importance of reduction of the time to market?			
Present your analysis how rapid prototyping helps in this aspect	6M	1	4
b) "Additive manufacturing reduces the weight of the component"			
Analyse the process and justify the statement	6M	1	4
UNIT-II			
4. Explain Solid Ground Curing Process with a neat sketch along			
with merits, demerits and applications	12M	2	2
OR			
5. Explain the process of producing components by Fusion			
Deposition Modelling with a neat sketch. Compare various	12M	2	2
filament materials based on strength, melting temperatures etc. UNIT-III	I Z IVI	2	2
6. a) Explain the fundamental principle and step-by-step process of			
Selective Laser Sintering (SLS).	6M	3	2

Code: 20A37MT

	b)	Discuss the advantages of SLS, particularly in terms of material choices, design complexity, and production speed. Also, analyze the limitations and challenges associated with SLS technology.	6M	3	2
		OR			
7.	a)	Assess the advantages of EBM technology in terms of material properties, speed, and precision. Also, discuss the limitations and challenges that EBM users may encounter in their applications	6M	3	4
	b)	Describe the core principle and the step-by-step process of Laser Engineered Net Shaping (LENS), highlighting the unique features that differentiate it from other AM methods, UNIT-IV	6M	3	2
8.	a)	Define direct and indirect tooling methods in the context of rapid tooling. Discuss the scenarios in which each approach is most suitable and the implications for manufacturing.	6M	4	3
	b)	Differentiate between soft and hard tooling methods in rapid tooling. Describe the materials and processes associated with			
		each method, and discuss when one is preferable over the other OR	6M	4	2
9.	a)	Define reverse engineering and explain its importance in various industries. Discuss how RE is applied in product development and improvement.	6M	4	2
	b)	Describe the role of point processing in reverse engineering, including the capture and manipulation of data points. Furthermore, explain how this data is used to develop geometric	0.0.4		
		models for applications in product design and analysis. UNIT-V	6M	4	2
10.	a)	Explain the common processing errors that can arise during specific RP technologies like SLA and SLS. Detail the factors contributing to these errors and their effects on the final prototype.	6M	5	2
	b)	Discuss the challenges associated with post-processing errors in RP. Provide examples and explain how addressing these errors is	014		
		essential for producing accurate and functional prototypes OR	6M	5	2
11.	a)	Discuss the application of RP techniques in planning, Explain how RP technology can streamline the planning process and lead to			
	h)	better outcomes. Evaluate the advantages of using RP techniques in rapid tooling.	6M	5	2
	IJ)	Describe the role of RP in tool and mold development *** End ***	6M	5	2

На	I Ticket Number :			
Cod	le: 20A363T	R-20 (S	(S)	
	IV B.Tech. I Semester Regular Examinations November 20)23		
	CAD/CAM (Machaniagl Engineering)			
Ма	(Mechanical Engineering) k. Marks: 70 ***********************************	Time: 3 H	Hours	
Note	2: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question)			
	er all the following short answer questions $(5 \times 2 = 10M)$		СО	BL
,	any two reasons for implementing CAD.		CO1	BL1
•	e Geometric Modeling.		CO2	BL2
•	are M03, M30 codes stands for in NC Programming?		CO3	BL2
•	the need of Group Technology?	th a da O	CO4	BL2
e) Menu	on the difference between contact and noncontact inspection me	thous?	CO5	BL2
_	PART-B			
Aı	swer <i>five</i> questions by choosing one question from each unit (5 x 12 :	= 60 Mar l Marks	ks) CO	BL
	UNIT-I	Marks	00	DL
2. a	Briefly explain the conventional process of the product			
	cycle in conventional manufacturing environment.	8M	CO1	BL2
b	Write short notes on i) Stroke writing ii) Raster Scan	4M	CO1	BL2
	OR			
3.	What is meant by Concatenation Matrix? Demonstrate how translation; scaling and rotation operations can be performed simultaneously on a graphic element using			
	Concatenation Matrix.	12M	CO1	BL3
	UNIT-II			
4. a	Differentiate between solid modeling and surface modelling methods.	6M	CO2	BL2
b) With the help of neat sketches, describe the most			
	commonly used solid entities.	6M	CO2	BL3
	OR			

Code: 20A363T

5.	a)	What do you mean by blending function? Explain reparameterization of a surface.	6M	CO2	BL3
	b)	Why the sweep representations are useful in creating solid models of 2D objects?		CO2	
		UNIT-III	Olvi	002	DLJ
6.	a)	List and give the meaning of any five G and M codes			
		functions.	6M	CO3	BL2
	b)	Explain the principle of CNC system with a block diagram.	6M	CO3	BL2
		OR			
7.	a)	Write the procedure for writing computer assisted part	014		
		programming?	6M	CO3	BL2
	b)	Discuss any two types of statements used in APT part programming	6M	CO3	פוס
		UNIT-IV	Olvi	COS	DL3
8.	a)				
	,	Resource Planning)? Explain them briefly.	6M	CO4	BL3
	b)	Write a short note on Retrieval type and Generative type			
		of CAPP.	6M	CO4	BL2
		OR			
9.	a)	Discuss how part classification is done in the context of			
		GT. What are the essential attributes such a coding system should take care of?	6M	CO4	BI 3
	h)	Elaborate briefly the MICLASS system of codification.		CO4	
	D)	UNIT-V	Olvi	004	DLZ
10.		Describe any two methods of non-contact type of			
		computer aided testing.	12M	CO5	BL3
		OR			
11.	a)	Mention the objectives of CAQC. Explain the different			
		computer aided inspection methods.	6M	CO5	BL2
	b)	Summarize the enterprise resource planning and	el 1	00-	D' C
		capacity requirements planning? *** End ***	OIVI	CO5	BL3
		LIIQ			