Hall	Tic	ket Number :													
Code	e :	1G576]		<u> </u>]		R-1 1	I/R-13
		IV B.Tech. I						-					ay 2	017	
			Advo						-	-	ems				
Μ	۱ax	. Marks: 70		(Me	chai	nical	ENG	jinee	Sung))			Time	: 03 Ho	ours
		A 11				any f		•				- 1- 1			
		All	Questi	ons co	arry e	-	31 MC	arks	(141	Mark	(s ec	icn)			
1. a	a)	Compare and	contras	t vario	us ty	pes c	of Ma	nufa	cturi	ng S	ysten	ns			8M
I	b)	Describe the i	nfluence	e of Ma	anufa	cturi	ng st	rateg	gies d	on bu	isines	ss co	ompet	titivenes	ss 6M
2. a	a)	Describe the		lology	to b	e fol	llowe	d fo	r de	velop	oing	a re	trieva	l type	
_		CAPP system													8M
	b)	Explain the r manufacturing		compu	iter r	netwo	orking	g in	impi	rovinę	g the	e pro	oducti	ivity of	a 6M
3. a	a)	Discuss the in	nportan	ce of N	laste	r Pro	ducti	on S	chec	duling	g in a	n MF	RP sy	stem	6M
I	b)	What is the ne	ed for I	DBMS'	? Brie	efly e	xplaiı	n the	arch	nitect	ure c	of DE	BMS		8M
4	c)	List out voriour			10 \\/;		a a a t	diaar		voloi			t. /		
	a) ⊾∖	List out various						•		xpiaii	n any	one	type		
I	b)	Classify the ty	pes or s	simulai	ion ir	i mar	nurac	turin	g						6M
5. a	a)	What is FMS?	What a	are the	com	pone	nts o	f FM	IS						8M
I	b)	Explain the ec	onomic	aspec	ts inv	volve	d wit	h Fle	exible	e Mar	nufac	turin	g Sys	stem	6M
0	-)														014
6. a	,	Differentiate C							o. "						6M
	b)	What are AG	/ˈs? Brie	eny exp	biain	the ty	ypes	of A	۶۷G						8M
7. a	a)	Briefly explain	the ma	jor ele	ment	s of A	Autor	nate	d Sto	orage	e Sys	tem			8M
I	b)	Explain the ro	le of Ro	obots i	n Fle	xible	Man	ufac	turinę	g Sys	stem				6M
c	-)								4	. .		o <i>i</i>			
8. 6	,	Explain the ro									•	•			8M
	b)	"Effective Deci	sion Su	oport S	yster	n is ti	пе ке	y tor	proc	IUCTIV	e ma	nuta	cturin	y - Justi	ify 6M

						R-11/R-13
Hall Ticket Number :						

Code: 1G574

IV B.Tech. I Semester Supplementary Examinations May 2017

Automation and Robotics

Max. Marks: 70

(Mechanical Engineering)

Time: 3 Hours

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) Distinguish between flexible automation and programmable automation. 7M (i) What is peq-in-hole assembly? 2M b) (ii) Show the schematic diagram of peg-in-hole and multiple peg-in-hole insertion. 2M (iii) Mention the relevance of multiple peg-in-hole insertion in the manufacture of electronic PC boards. 2M 2. a) With a schematic diagram, outline the relevance of linear part-transfer and briefly describe ANY TWO mechanisms for the purpose. 10M b) What is a storage buffer in a production line? 4M 3.
- Figure Q3 shows a precedence diagram that contains a number of nodes and arrows.
 - (i) Briefly outline the information available in the diagram, and
 - (ii) Outline how such a precedence diagram is useful in assembly line balancing.

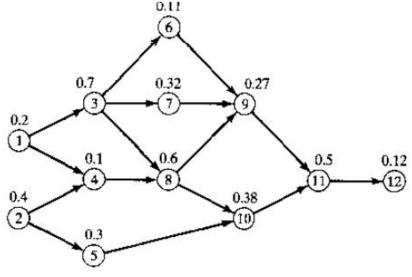


Figure Q3: Precedence Diagram

14M

6M

1M

- 4. a) (i) What is meant by the term "degrees of freedom" of an industrial manipulator? 2M
 - (ii) With a schematic diagram, illustrate pitch, yaw and roll motions of an end effector.
 - b) (i) Gantry robot is an example of the Cartesian type of industrial manipulator. With a schematic diagram, describe the principle of operation of the Gantry robot.
 5M
 - (ii) Also, state the application of the gantry robot.

Page **1** of **2**

5. a) Consider the planar two-link 2-dof RP manipulator shown in Figure Q5.

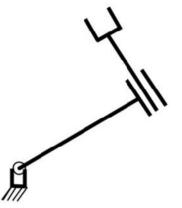


Figure Q5: Two-link RP manipulator

		(i) Assign the joint axes as per DH convention.	2M
		(ii) Prepare the DH parameter table.	2M
		(iii) Identify which of the joint parameter is variable for each of the two joints.	2M
	b)	Outline ANY ONE method of deriving equations of motion of a robot manipulator.	8M
6.	a)	Distinguish between Point-to-point motion and continuous path motion.	
		(Also, provide schematic figures as necessary.)	9M
	b)	(i) What is the role of the teach pendant in robot programming?	
		(ii) What is the function of the "dead-man's switch" in a teach pendant?	5M
7.	a)	An air cylinder is to be used to actuate the translational joint of a robot	
		manipulator. The piston diameter is 50 mm, the air pressure is 500 kPa	
		(assumed constant), and the airflow rate is 0.01 m ³ /minute. Determine the	
		following:	
		(i) The force generated by the piston	3M
		(ii) The velocity during the forward stroke.	3M
	b)	Describe the principle of operation of an absolute encoder.	8M
8.	a)	With a schematic diagram, describe remote-centre assembly.	8M
	b)	What is meant by seam-line tracking in robotic welding? Briefly outline ANY	
		ONE method of seam-line tracking.	6M

Sede: 10552			 1			R-11 / R-13
Hall Ticket Number :						

Code: 1G573

Max. Marks: 70

IV B.Tech. I Semester Supplementary Examinations May 2017

Finite Element Methods

(Mechanical Engineering)

Time: 3 Hours

7M

7M

5M

9M

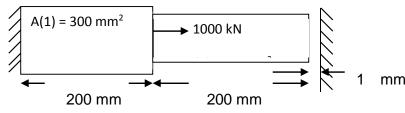
7M

7M

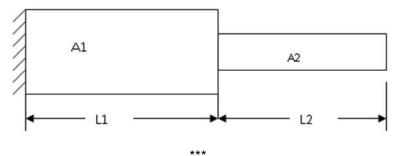
4M

10M

6M


8M

6M


5M

Answer any *five* questions All Questions carry equal marks (14 Marks each)

- a) Explain the equilibrium state of the system, when the system is subjected to different types 1. of loads and explain the stress and equilibrium relations.
 - Derive the stiffness matrix based Galerkin approach and discuss the salient features of b) the method.
- Derive the strain displacement relation matrix for the 1 D axial bar element with quadratic function. 2. a)
 - b) Calculate displacement vector, stresses and reaction for the following figure. Take E = 2E 5 N/mm²

- Derive the stiffness matrix and load vector for the space truss element from the first 3. a) principles.
 - The coordinates of the space truss element is given as 1(0,0,0) and 2(20,35,65) mm has the b) displacement values {-0.03 0.02 -0.01 -0.03 0.02 0.2}^T mm with the material properties 200 GPa Youngs Modulus. Calculate the stiffness matrix, load vector and strain energy if the cross sectional area of the truss is 100 mm².
- a) What is the polynomial function choosen for the beam element? Derive the corresponding 4 shape functions.
 - b) A beam is fixed at one end and supported by a roller at the other end, has a 20 kN concentrated load applied at the centre of the span of 10 m. Calculate the deflection and slope and also construct shear force and bending moment diagrams. Take I = 2500 cm⁴ and $E = 20 \times 10^6 \text{ N/cm}^2$.
- a) What are different boundary conditions associated with a triangular element? Explain the 5. method to consider those boundary conditions in the solution 8M
 - b) The nodal coordinates of a triangular element are 1(10,30), 2(50,30) and 3(40,60) mm. At a point p inside the element, the x-coordinates is 33 mm and the shape function $N_1 = 0.3$. Determine the shape functions and y-coordinates of the point P.
- a) Derive the shape functions for four noded quadrilateral element in terms of natural 6. coordinate system.
 - b) Solve the following integral equation using one point, two point and three point Gaussian quadrature methods and compare with the exact solution. $(1/1+x^3) + 3e^x$ dx with the limits from -1 to +1.
- a) Heat is generated in a large plate(K=0.8W/m K) at the rate of 4000 W/m³ the plate is 25 cm 7. thick , the outside surface of the plate are exposed to ambient air at 30°C with a convective heat transfer coefficient of 20W/m² K. Determine the temperature distribution in the wall. 7M 7M
 - b) How to incorporate the convective boundary conditions for the fin? Explain in detail.
- 8 Derive the constituent mass matrices for the bar element and beam element. a)
 - Determine Eigen values and Eigen vectors for the stepped bar as shown in figure. b) E=30 x10⁶ N/m², Specific weight = 0.283 kg/m³; A₁= 1 m²; A₂= 0.5 m²; L₁=10 m; L₂ = 5 m.

Hall Ticket Number :										
					<u> </u>		<u> </u>		R-11 / R	-13
Code: 1G571	• •	•			_		<i>.</i> .		0017	
IV B.Tech. I .	Semeste	er Supp	oleme	entary	Exai	mine	atior	ns M	ay 2017	
		Operc	ations	Resea	arch)				
	(Mecho	nical	Engine	ering	g)				
Max. Marks: 70	-			-					Time: 3	Hours
		Answer	any fiv	/e ques	tions					
A	II Questio	ns carry	equal		14 M	arks	each	h)		
1. Solve the follow	wing probl	em								
N	laximize, Z	Z=6x₁+7	x ₂ +5x ₃							
	S	ubject to	o consti	raints						
	2	24x ₁ +30	x ₂ +20x	3 1200)					
		25	x ₂ +15x ₃	600						
		50	x₁+25x	3 1500						
		X 1,	X 2, X 3	0						14M
2. a) Describe the tra	ansportati	on prob	lem witl	h its gei	neral	math	nema	tical f	ormulation.	4M
b) Find the optin	num solut	ion to th	ne tran	sporta	tion	probl	em g	iven	in figure. 1	

b) Find the optimum solution to the transportation problem given in figure. 1 for which the cost, origin-availabilities, and destination-requirements are given.

				Γ	Co.		
		A	В	С	D	E	ai
	I	3	4	6	8	8	20
From	п	2	10	1	5	30	30
	ш	7	11	20	40	15	15
	IV	2	1	9	14	18	13
bj	-	40	6	8	18	6	- 78

Fig.1

10M

4M

- 3. a) State some of the simple replacement policies and explain about any one policy in brief.
 - b) A factory has a large number of bulbs, all of which must be in working condition. The mortality of bulbs is given in the following table:

Week	1	2	3	4	5	6
Proportion of bulbs	0.10	0.15	0.25	0.35	0.12	0.03

If a bulb fails in service, it cost Rs.3.50 to replace; but if all the bulbs are replaced at a time it costs Rs.1.20 each. Find the optimum group replacement policy.

4M

- 4. a) What are the assumptions made in the theory of games?
 - b) Solve the game given in figure 2 by reducing to 2 × 2 game by graphical method.

		Player]	В
		I	П
	I	-6	7
Player A	II	4	-5
	Ш	- 1	-2
	IV	-2	5
	V	7	6

Figure 2

10M

- 5. A tax consultant firm has 3 counters in its office to receive people who have problems concerning their income, wealth and sales taxes. On the average 48 persons arrive in 8 hour day. Each tax advisor spends 15 minutes on the average on an arrival. If the arrivals poissonly distributed and service times are according to exponential distribution. Find
 - a) The average number of customers in the systems
 - b) Average number of customers waiting to be serviced
 - c) Average time a customer spends in the system
 - d) Average waiting time for a customer
 - e) The probability that a customer has to wait before he gets service. 14M

6. a)	Discuss about significance of inventory.	4M
-------	--	----

- b) A stockiest purchases an item at the rate of Rs. 40 per piece from a manufacturer. 2,000 units of the item are required per year. What should be the order quantity per order if the cost per order is Rs.15 and the inventory charges per year are 20 per cent?
- 7. a) Define Bellmen's principle of optimality.
 b) Discuss about application of dynamic programming.
 7M
- 8. Define simulation. Discuss about limitations of simulation. 14M

Hall Tic	cket Number :													
Code :	1G578		II			1		1]]]		I	R-11/F	R-13
	IV B.Tech. I	Un con	ven	lional	Mac	hini	ng	pro			1ay 2	2017	7	
Ma	x. Marks: 70 All		Answ		five	ques	stion	S	s ea	ach	-	e: 03	8 Hour	S
1. a)	Defend the ne	ed for the	deve	lopmen	t of no	on-tra	aditio	nal n	nachi	inin	g met	thod	S.	8M
b)											6M			
2. a)	With the help ultrasonic mad			•			ne s	truct	ure d	of t	he h	orn	of an	8M
b)	Discuss about	the recer	nt dev	elopme	nts in	ultra	sonic	c mae	chinir	ng.				6M
3. a)	Describe and	characteri	ze th	e individ	lual el	emei	nts o	faw	ater j	jet r	nachi	ine.		7M
b)	List out the ap	plications	and I	limitatio	ns of a	abras	sive j	et ma	achin	ing.				7M
4. a)	Derive an equ	ation for n	netal	remova	l rate i	in ele	ectro	chen	nical	ma	chinir	ng.		8M
b)	Explain the wo	orking prin	ciple	of elect	ro che	emica	al grir	nding	J.					6M
5. a)	List out the p explain their in	•					lectri	c dis	schar	ge	macł	ninin	g and	8M
b)	Derive equation discharge mad		netal	remova	al rate	e and	d su	rface	e rou	ıghr	iess	in e	lectric	6M
6. a)	Compare and	contrast t	herm	al and n	on-the	erma	l pro	cess	es.					6M
b)	Comment abo	out the cut	ting s	peed an	nd acc	uracy	y of c	cut in	lase	r be	eam n	nach	ining.	8M
7. a)											7M			
b)	Comment abc chemical mac		ctors	to be co	onside	ered	while	e sele	ecting	g th	e ma	iskar	nts for	7M
8. a)	With the help of	of line dia	gram	explain	magn	etic a	abras	sive f	inish	ing.				8M
b)	Discuss the ap	oplications	s of ra	apid prot	otypir	ng.								7M