Digital Design Through Verilog HDL

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours

Answer any five questions

All Questions carry equal marks (14 Marks each)
$* * * * * * * * *$

1. Explain the seven - types of Verilog lexical tokens with suitable examples. 14 M
2. a) Write Verilog code, truth table and circuit diagram for 4-to-16 decoder? 7M
b) Write Verilog code, truth table and circuit diagram for AOI gate? 7M
3. Write Verilog code, truth table and timing diagrams for the ALU with suitable
diagrams and descriptions.
4. a) Write Verilog code, truth table and circuit diagram for an edge triggered flip-flop? 8 M
b) Explain delays in Verilog? 6M
5. Write Verilog code for CMOS Inverter and 2 - input CMOS NOR gate with
neat circuit diagrams and also write the test bench program for it.
6. a) Explain Melay machine FSM with neat block diagram. 6M
b) Write Verilog code for Sequence generator using Melay machine FSM. 8M
7. a) Explain about FPGA with neat block diagrams 7M
b) Explain about CPLD with neat block diagrams 7M
8. a) Design UART using Verilog HDL 6M
b) Write about 486 Bus model 8 M

IV B.Tech. I Semester Supplementary Examinations October 2020

Digital Signal Processing

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. Find the natural response and zero state response of the system described by the difference equation
$y(n)+2 y(n-1)+y(n-2)=x(n)+x(n-1) \quad$ with initial condition $y(-1)=y(-2)=1$ and input $x(n)=(1 / 2)^{n} u(n)$
2. State and prove the following properties of discrete Fourier series
i) Linearity
ii) Time reversal
3. What is the need of FFT? Explain 16-point radix-2 DIT-FFT algorithm with the help of flow-graph and necessary steps
4. a) Find the z-transform and ROC of the following signals
(i) $x(n)=a^{n} u(n)$
(ii) $x(n)=(1 / 2) \delta(n)+\delta(n-1)+(1 / 2) \delta(n-2)$
b) State and prove the following properties of z-transform
(i) Multiplication by an exponential sequence
(ii) differentiation in z-domain
5. Design a Chebyshev filter with a maximum passband attenuation of 2.5 dB at $\mathrm{p}=20 \mathrm{rad} / \mathrm{sec}$ and the stop band attenuation of 30 dB at $\mathrm{s}=50 \mathrm{rad} / \mathrm{sec}$
6. a) Distinguish between the IIR and FIR filters
b) Determine the magnitude and phase responses of linear phase FIR filter for N is odd
7. a) List out the applications of multirate signal processing
b) Consider a signal $x(n)=u(n)$
(i) Determine and sketch a signal with a decimation factor ' 3 '
(ii) Determine and sketch a signal with a interpolation factor ' 3 '
8. Write short notes on
(i) Echo filter
(ii) Reverberation
(iii) Chorus generator
