Hall ⁻	cket Number :	
Code:	G478	13
IV	.Tech. I Semester Supplementary Examinations November 2019	7
	Computer Networks	
Max.	(Electronics and Communication Engineering) arks: 70 Time: 3 H	ours
	Answer any five questions	
	All Questions carry equal marks (14 Marks each)	
1. a	If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio is	
	20 dB, what is the maximum achievable data rate	4M
b		10M
2. a	A channel has a bit rate of 4 kbps and a propagation delay of 20 msec. For what range of frame sizes does stop-and-wait give an efficiency of at least 50%	5M
b	With an example, explain simplex stop-and-wait protocol	9M
3. a	A group of N stations share a 56-kbps pure ALOHA channel. Each station	•
	outputs a 1000-bit frame on average once every 100 sec, even if the previous	
	one has not yet been sent (e.g., the stations can buffer outgoing frames). What is the maximum value of N	4M
b		10M
	In figure 1, compute the shortest path from node A to node D. Explain in details	
	of five steps used in computing the shortest path from node A to node D.	
	A = 2 = 2 = 7 = 3	
	Ğ H	
	Figure 1. Network.	8M
t	Analyse datagram and virtual-circuit with respect to the circuit setup, state information, routing, effect of router failure, QoS parameters	6M
5. a	Identify classes of following IP addresses	0.01
	i. IP address: 50.12.7.8	
	ii. IP address: 222.20.5.1 iii. IP address: 190.73.26.1	
	iv. IP address: 126.20.3.5	6M
ł	Why we need fragmentation. Explain transparent fragmentation and	014
6. a	nontransparent fragmentation What is the total size of the minimum TCP MTU, including TCP and IP	8M
0. 6	overhead but not including data link layer overhead?	5M
ł	With diagram, explain TCP connection management finite state machine	9M
7. a	What is the bit rate for transmitting uncompressed 1200×800 pixel color	. . -
	frames with16 bits/pixel at 50 frames/sec	4M
8. a	Explain five basic functions of email system In a system an RSA algorithm with p= 5 and q=11, is implemented for data	10M
0. 0	security. What is the value of the decryption key if the value of the encryption	
	key is 27	6M

b) Explain digital signature using public-key encryption

8M

Hall Ticket Number :																
Code: 1G373													R-	11 /	R-13	
IV B.Tech. I Semester Supplementary Examinations November 2019 Digital Design Through Verilog HDL																
Max	k. M	(El arks: 70	lectr				nmu			-	inee	ering)	Ti	me: 3	8 Hours
Answer any five questions All Questions carry equal marks (14 Marks each) ********																
1.		Represent a m in Verilog HDL							s por	ts ar	nd th	en ex	xpla	in a n	nodule	e 14M
2.		Write a design circuit output n			ind te	est b	ench	for h	alf a	dder	and	draw	its :	synth	esized	d 14M
3.		Write the synta relevant to beh				-				ıd giv	/e or	ne ex	am	ole fo	r each	י 14M
4.	a)	How delay c assignments? signals.			•								•			
	b)	Write Verilog c	ode	for D	-Lato	ch wi	ith ne	at bl	ock c	liagra	ams					6M
5.		Write Verilog on neat circuit dia								•				•	te with	ח 14M
6.		What is SM ch	art?	Expla	ain th	ne co	oncep	ot of I	ealiz	ation	of S	SM cł	nart.			14M
7.	a) b)	Explain about Explain about						U								7M 7M
8.	a) b)	Design UART Write a note or		-	•		nory	to a I	micro	proc	esso	or bus	S.			8M 6M

Hall Ticket Number :	
R-11 / R-13	5
Code: 1G372 IV B.Tech. I Semester Supplementary Examinations November 2019	
Digital Signal Processing	
(Common to EEE & ECE) Max. Marks: 70 Time: 3 Hou	irc
Answer any five questions	13
All Questions carry equal marks (14 Marks each)	
 a) State and Prove the following properties of the discrete time Fourier transform 	
(i) Time shifting (ii) Time Convolution	7M
 b) Determine the values of power and energy of the following signals. Find whether the signals are power, energy or neither energy nor power signal X(n)=(1/3)ⁿu(n) 	7M
2. a) State and prove the following properties of discrete Fourier series	
(i) Linearity (ii) Time reversal	7M
b) Compute the discrete Fourier transform of the sequence $x(n) = \{1, 1, 1, 1\}$	7M
 What is the need of FFT? Explain 16-point radix-2 DIT-FFT algorithm with the help of flow-graph and necessary steps 	4M
4. A causal system is represented by the following difference equation	
y(n) + (1/4) y(n-1) = x(n) + (1/2) x(n-1)	
(a) Find the system function H(z) and give the corresponding ROC	
(b) Find the unit step response of the system in analytical form	
(c) Determine the frequency response H(e ^j) and also find magnitude and phase response	4M
	41VI 7M
	7M
6. Design a digital FIR filter with	
$H_{d}(e^{j}) = e^{-j^{3}}; - /4 /4$	
= 0 ; /4	
Using a Hamming window with N=7	4M
7. a) List out the applications of multirate signal processing	7M
b) Consider a signal $x(n) = u(n)$	
(i) Determine and sketch a signal with a decimation factor '3'	
(ii) Determine and sketch a signal with a interpolation factor '3'	7M
8. Discuss the need of signal compression 1	4M