Hall Ticket Number :					
Code: 4G573					R-14
IV B.Tech. I Semeste	r Suppleme	entary Exa	iminatio	ns Augus	† 2020
F	inite Elem	ent Meth	ods		
	(Civil Eng	gineering)			
Max. Marks: 70					Time: 3 Hours
Answer all five units by choo	•	uestion from	n each ur	nit (5 x 14 =	= 70 Marks)
		UNIT-I]		

- 1. a) Describe the procedure involved in finite element method?
 - b) If the displacement field is described as follows,

$$u = (-x^2 + 2y^2 + 6xy) 10^{-4}$$
 and $v = (3x + 6y - y^2) 10^{-4}$,

Determine the strain components (direct and shear) at the point x=1, y=0. 7M

OR

2. An axial load of 4X10⁵ N is applied at 30⁰ C to the rod as shown in figure. The temperature is then raised to 60^oC. Calculate nodal displacements, stresses in each element and reactions at each node.

	Al	Р	-•	Steel	
√ ∢	200 mm		←	300 mm	

	Aluminum	Steel	
А	1000 mm ²	1500 mm ²	
Е	0.7 X 10 ⁵ N/mm ²	2 X 10 ⁵ N/mm ²	
r	23 X 10 ^{-6/0} C	12 X 10 ⁻⁶ / ⁰ C	

UNIT–II

3. For the two bar truss shown in figure, determine the displacement at node 1 and the stress in element 1-3. Take E=70 GPa, A=200 mm².

14M

14M

7M

4. For the loaded beam shown in figure, determine the slope and deflection at node 2 using finite element concept. Take EI=900 Nm².

5. Calculate displacements and stress in a triangular plate, fixed along one edge and subjected to concentrated load at its free end. Assume E = 70,000 MPa, t=10mm and = 0.3.

6. Determine stiffness matrix for given axi-symmetric element. E=200GPa, ^=0.25. Coordinates are in millimeters.

- 7. a) Define i) Isoparametric element ii) Subparametric element iii) Super parametric element. 4M
 - b) Evaluate following using Gaussian quadrature. Also compare with exact solutions.

i.
$$\int_{-1}^{1} (x^4 - 3x + 7) dx$$

ii. $\int_{-1}^{1} e^{-x} dx$
iii. $\int_{-1}^{1} [x^2 + \cos(x/2)] dx$
iv. $\int_{-1}^{1} \frac{\cos x}{1 - x^2} dx$
10M

8. A composite wall consists of 3 materials. The outer surface temperature is 20°C. Convective heat transfer takes place on the inner surface of the wall with surrounding temperature T_{α} = 800°C, and h=25W/m²K. Determine the temperature distribution in the wall.

9. Evaluate Eigen vectors and Eigen values for the stepped bar shown in figure. Take E= 200 GPa and specific weight 7850 kg/m³. Draw mode shapes. Take A_1 =300 mm² and A_2 = 150mm².

10. Evaluate the lowest Eigen value and the corresponding Eigen modes for the beam shown in figure. E=200 GPa and ^{...} =7840kg/m3, I=2000 mm4, A=240 mm2, L=300mm.

