Hall Ticket Number :

Code: 4G573

R-14

IV B.Tech. I Semester Supplementary Examinations August 2020

Finite Element Methods

(Civil Engineering)

Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Describe the procedure involved in finite element method?
b) If the displacement field is described as follows,
$u=\left(-x^{2}+2 y^{2}+6 x y\right) 10^{-4}$ and $v=\left(3 x+6 y-y^{2}\right) 10^{-4}$,
Determine the strain components (direct and shear) at the point $x=1, y=0$.

OR

2. An axial load of $4 \times 10^{5} \mathrm{~N}$ is applied at $30^{\circ} \mathrm{C}$ to the rod as shown in figure. The temperature is then raised to $60^{\circ} \mathrm{C}$. Calculate nodal displacements, stresses in each element and reactions at each node.

	Aluminum	Steel
A	$1000 \mathrm{~mm}^{2}$	$1500 \mathrm{~mm}^{2}$
E	$0.7 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$	$2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
α	$23 \times 10^{-6} / 0 \mathrm{C}$	$12 \times 10^{-6} / 0 \mathrm{C}$

UNIT-II

3. For the two bar truss shown in figure, determine the displacement at node 1 and the stress in element $1-3$. Take $\mathrm{E}=70 \mathrm{GPa}, \mathrm{A}=200 \mathrm{~mm}^{2}$.

4. For the loaded beam shown in figure, determine the slope and deflection at node 2 using finite element concept. Take EI=900 Nm².

UNIT-III
5. Calculate displacements and stress in a triangular plate, fixed along one edge and subjected to concentrated load at its free end. Assume $E=70,000 \mathrm{MPa}$, $\mathrm{t}=10 \mathrm{~mm}$ and $=0.3$.

OR
6. Determine stiffness matrix for given axi-symmetric element. E=200GPa, $v=0.25$. Coordinates are in millimeters.

UNIT-IV

7. a) Define i) Isoparametric element parametric element.
ii) Subparametric element iii) Super parametric element.
b) Evaluate following using Gaussian quadrature. Also compare with exact solutions.
i. $\quad \int_{-1}^{1}\left(x^{4}-3 x+7\right) d x$
ii. $\int_{-1}^{1} e^{-x} d x$
iii. $\int_{-1}^{1}\left[x^{2}+\cos (x / 2)\right] d x$
iv. $\int_{-1}^{1} \frac{\cos x}{1-x^{2}} d x$
8. A composite wall consists of 3 materials. The outer surface temperature is $20^{\circ} \mathrm{C}$. Convective heat transfer takes place on the inner surface of the wall with surrounding temperature $T_{\alpha}=800^{\circ} \mathrm{C}$, and $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the temperature distribution in the wall.

$$
\begin{aligned}
& K_{1}=20 \mathrm{~W} / \mathrm{mK} \\
& K_{2}=30 \mathrm{~W} / \mathrm{mK} \\
& K_{3}=50 \mathrm{~W} / \mathrm{mK} \\
& h=25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
& T_{\alpha}=800^{\circ} \mathrm{C}
\end{aligned}
$$

UNIT-V

9. Evaluate Eigen vectors and Eigen values for the stepped bar shown in figure. Take $\mathrm{E}=200 \mathrm{GPa}$ and specific weight $7850 \mathrm{~kg} / \mathrm{m}^{3}$. Draw mode shapes. Take $A_{1}=300 \mathrm{~mm}^{2}$ and $A_{2}=150 \mathrm{~mm}^{2}$.

OR

10. Evaluate the lowest Eigen value and the corresponding Eigen modes for the beam shown in figure. $\mathrm{E}=200 \mathrm{GPa}$ and $\rho=7840 \mathrm{~kg} / \mathrm{m3}, \mathrm{I}=2000 \mathrm{~mm} 4, \mathrm{~A}=240$ $\mathrm{mm} 2, \mathrm{~L}=300 \mathrm{~mm}$.

