
Hall Tic	cket	Number :															-
Code: 4	G57	4	<u>. </u>						J						R	R-14	
	IV	B.Tech. I	Sem	nest	er S	upp	olem	nent	ary	Exa	mir	natio	ons	Ma	y 20 [°]	18	
				Α	utoi	mat	lion	and	d Ro	bot	ics						
				(Me	cha	nico	ıl Eng	gine	ering	3)						
Max. I	Marl	<s: 70<="" td=""><th></th><th></th><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th>Time</th><th>e: 3 Ho</th><td>urs</td></s:>													Time	e: 3 Ho	urs
Answe	er al	l five units	by c	choo	osing	one		estic	on fro	om e	eac	h ur	nit (ł	5 x 1	4 = 7	0 Mark	(s
								UNI	T–I								
1.	a)	What are	the v	ariou	is au	toma	ation	strat	egies	and	l exp	lain	any	one?	>		
	b)	List the ba	asic e	leme	ents o	of au	Itoma	ated	syste	m ar	nd ex	kplai	n an	y one	ə.		
									0	R							
2.	a)	Define au	tomat	tion.	List	the n	eed	for a	utom	atior	ı.						
	b)	Explain th	e org	aniz	ation	and	infoi	rmati	on pr	oces	ssing	g in n	nanı	ufactu	uring		
								UNI	Г—II								
3.		Apply the	Ranke	ed Po	ositior	nal W	/eight	meth	nod fo	or bel	ow F	ig.1 a	and c	deterr	nine th	ne follow	/ing.
		(i). Balanc	ing Ef	ficier	ncy, (i	i). Ba	alance	e dela	ay and	d (iii)	Smo	othn	ess i	ndex			
								0.1	1								
								10	~								

Figure Q3: Precedence diagram.

4. Draw the precedence diagram and determine the no of workstations required by using Kilbridge & Wester method for the assembly line problem outlined in below Table. Also calculate its balancing efficiency and balance delay.

	-	
Work Element (j)	T _{ej} (min)	Must be preceded by
1	0.2	-
2	0.4	-
3	0.7	1
4	0.1	1,2
5	0.3	2
6	0.11	3
7	0.32	3
8	0.6	3,4
9	0.27	6,7,8
10	0.38	5,8
11	0.5	9,10
12	0.12	11
	UNIT-III	

5. Classify robot configuration.

OR

6. List the factors considered in design of grippers.

UNIT–IV

7. Explain forward and inverse kinematics with reference to robots.

OR

8. Explain trajectory planning system with reference to robots.

UNIT-V

9. List the different motion commands.

OR

10. Give the different applications of robot in manufacturing industries.

	F	Hall Ticket Number :	
	Co	R-14	
		IV B.Tech. I Semester Supplementary Examinations May 2018	
		Automobile Engineering	
	۸ ۸	(Mechanical Engineering) Jax. Marks: 70 Time: 3 Hou	irc
	771	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	13
1.	a)	What are the essential requirements to be satisfied by material for the following automobile	
		engine components? Piston, Piston rings, Cylinder block, Connecting rod, Crankshaft, Inlet & Exhaust valves.	7
	b)	Discuss the effect of supercharging on power output, mechanical efficiency and specific	1
	D)	fuel consumption of an automobile.	71
		OR	
2.	a)	With a neat sketch explain Bendix drive starting mechanism.	71
	b)	Explain the working of horn and wiper in an automobile engine.	7
_		UNIT-II	
3.	a)	List the various parts of fuel feed system of a car. Draw a diagram showing these parts in respective positions.	7
	b)	Illustrate the construction and working principle of a fuel injector.	7
		OR	
4.	a)	What are the main sources of pollutants from gasoline engines?	7
	b)	Explain various techniques to control NOx emissions from automobiles.	71
5.	a)	How engines are air cooled? What is the purpose of fins in an air cooled system? What is	
		the size and spacing of fins?	71
	b)	Explain how pressure sealed cooling system is different from conventional water cooling system.	71
		OR	
6.	a)	Explain how the high voltage required for sparking is built up by the battery ignition system?	7
	b)	Describe with diagram, the magneto ignition system.	7
		UNIT–IV	
7.	a)	What is purpose of over drive in automobiles? Explain.	71
	b)	Explain the working of different types of rear axles.	71
8.	a)	OR Explain the applications of overdrive in automobile sector.	71
0.	b)	How turning radius of a vehicle is related to differential? Explain.	71
	5)		11
9.		With neat sketches explain types of steering gear and give the application of each.	14
		OR	
0.	a)	Why disc brakes are preferable at the front side of the vehicle? Explain	41
	b)	Explain different types of suspension system with neat sketches	10

	C	ode: 4G576	<u> </u>	÷ 1		,I				R-14	1
		IV B.Tech. I Semeste	er Supple	emento	arv E	xam	ninat	tion	s Mav	/ 2018	
			ced Ma						,		
			Mechan								
		lax. Marks: 70						•••		Time: 3 Ho	
	A	nswer all five units by choo	sing one		n froi	n ec	ich u	init (5 x 14	1 = 70 Mar	KS)
			UN	IIT-I							
1.	a)	What are the major elements			appli	catior	ns of	FMS			
	b)	Compare and Contrast: Flex			•••					anufacturing	a
	,	Cell.		,	y - y -						5
				OR							
2.	a)	Explain the hierarchy of the C	IM.								
	b)	Justify the need, benefits and	limitations	s of FMS							
			UN	IIT–II							
3.	a)	Why Just-in-time (JIT) Produc	ction syste	m is tern	ned a	s pull	syste	em?	Explair	n its types.	
	b)	What method used for formin	g cells in g	group tec	hnolo	gy? E	Expla	in wi	th an e	xample?	
				OR							
4.	a)	What is Just-in-time (JIT) Pro	duction? V	Vhat are	the b	enefit	ts of 、	JIT F	roduct	ion?	
	b)	State the applications of Grou	ıp Technol	logy.							
			UN	IT–III							
5.	a)	What do you mean by AVG?	Explain its	practica	l appl	icatio	ons in	indu	stries.		
	b)	Explain how automated inspe	ction is us	eful in in	dustri	es wi	ith su	itabl	e exam	ple.	
				OR							
6.	a)	Define DNC. Explain the app	ication of I	DNC in n	nachii	ne too	ol cor	ntrol	unit.		
	b)	Write short notes on transfer	line with a	nd withou	ut inte	ernal s	stora	ge.			
			UN	IT–IV							
7.	a)	Detail about the issues in ma	nufacturing	g system	flexib	oility.					
	b)	Enumerate the tests involved	in checki	ng the fle	exibilit	y in a	an au	toma	ated ma	anufacturing	g
		system and explain.									
				OR							
8.	a)	Distinguish flexible manufac	turing sys	stems ba	ased	on th	ne ty	pe o	of oper	rations the	у
		perform.		,							
	b)	Compare four criteria of flex flexibility.	bility in a	manufac	turing	g sysi	tem a	and 1	he sev	en types c)t
		nexionity.		IT–V							
9.	a)	What are the basic requireme			nade	d by t	the cr	ontro	ller to a	achieve real	I_
	α)	time control?			anago	3.0y 1					•
	b)	State the role of Information t	echnologv	in FMS.							
	,		- 37	OR							
0.	a)	Discuss FMS application for s	sheet meta		tion.						
	b)	Discuss the economic justific									
	- /			***							

r:

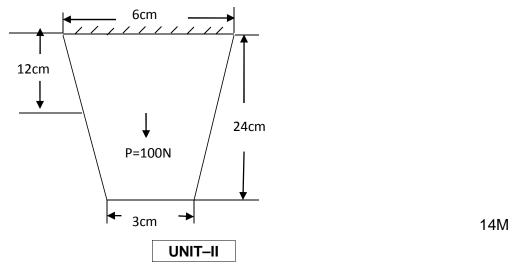
Code: 4G573

IV B.Tech. I Semester Supplementary Examinations May 2018

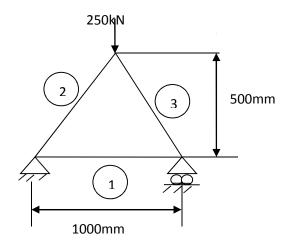
Finite Element Methods

(Mechanical Engineering)

Max. Marks: 70


Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

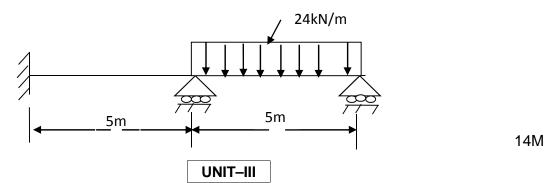
UNIT-I


- 1. a) Enumerate the steps involved in finite element method. 10M
 - b) List out the Engineering applications of finite element method. 4M

OR

- 2. Consider the thin (steel) plate shown in figure. The plate has a uniform thickness t=10mm, Young's modulus $E=20x10^9N/m^2$.
 - a) Using the elimination approach, solve for the global displacement vector
 - b) Evaluate the stresses in each element.
 - c) Determine the reaction force at the support.

- Consider a three bar truss as shown in figure. It is given that E=2X10⁵N/mm². Calculate the following:
 - (i) Nodal displacements
- (ii)Stress in each member
- (iii) Reactions at the support.



14M

R-14

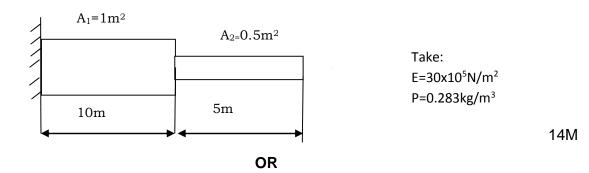
Time: 3 Hours

4. For the beam loaded as shown in figure, determine the slope at the simple supports. Take E=200GPa, $I=4x10^6$ m⁴.

5. The (X, Y) coordinates if the nodes of a triangular element of thickness 0.5cm are (2,4), (5,3), (3,6) cms. Its young's modulus is 200GPa. Poisson's ratio 0.3. The edge of the element formed by points (2,4), (5,3) is fixed and a load of 6kN is acting at point (3,6). Find the nodal displacement
14M

OR

 Derive the stress-strain relationship matrix [D] for the axi-symmetric triangular element.
 14M


 Derive the element stiffness matrix for a linear iso-parametric quadrilateral element.
 14M

OR

8. A steel fin of diameter d=2cm, Length (L) = 5cm and thermal conductivity $K=50W/m^{-0}C$ is exposed at one end to a constant temperature of 320°C. The other end is in ambient air of temperature 20°C with a convection co-efficient of $h=100W/m^{2-0}C$. Determine the temperature at the midpoint of the fin. 14M

UNIT-V

9. Determine the Eigen values and Eigen vectors for the beam shown in figure

10. Find the natural frequency of a can ileve be invibrating freely in the axial direction. The exact solution is $= \frac{\frac{1}{2l} \sqrt{\frac{1}{\rho}} \frac{1}{\sqrt{\frac{1}{\rho}}} \frac{$

Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code: 4G571

IV B.Tech. I Semester Supplementary Examinations May 2018

Operations Research

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

1. An Air Force is experimenting with three types of bombs P, Q and R in which three kinds of explosives, viz., A, B and C will be used. Taking the various factors into account, it has been decided to use the maximum 600 kg of explosive A, at least 480 kg of explosive B and exactly 540 kg of explosive C. Bomb P requires 3, 2, 2 kg, bomb Q requires 1, 4, 3 kg and bomb R requires 4, 2, 3 kg of explosives A, B and C respectively. Bomb P is estimated to give the equivalent of a 2 ton explosion, bomb Q, a 3 ton explosion and bomb R, a 4 ton explosion respectively. Under what production schedule can the Air Force make biggest bang.

OR

2. Use two-phase method to solve the following Linear Programming Problem.

 $Max \ Z = 3X_1 - X_2$

subject to $2X_1 + X_2 \ge 2$ $X_1 + 3X_2 \le 2$ $X_2 \le 4$

 $X_1, X_2 \ge 0$

and

UNIT–II

3. Goods have to be transported from sources S_1 , S_2 and S_3 to destination D_1 , D_2 and D_3 . The transportation cost per unit, capacities of the sources, and the requirements of the destinations are given in the following table.

	D ₁	D_2	D_3	Supply 120
S ₁	8	5	6	120
S ₂	15	10	12	80
S₃	3	9	10	80
Demand	150	80	50	

Determine a transportation schedule so that cost is minimized. Use North-west corner rule to find Basic Feasible Solution.

OR

4 A solicitors' firm employs typists on hourly piece-rate basis for their daily work. There are five typists and their charges and speed are different. According to an earlier understanding only one job was given to one typist and the typist was paid for a full hour, even if he worked for a fraction of an hour. Find the least cost allocation for the following data:

	Rate per	No. of
Typist	hour (Rs)	pages typed/hour
		typed/hour
А	5	12
В	6	14
С	3	8
D	4	10
F	4	11

Job	No. of pages
Р	199
Q	175
R	145
S	298
Т	178

14M

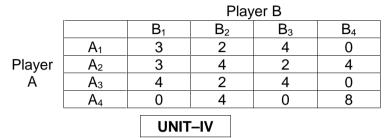
14M

14M

14M

R-14

5. The following mortality rates have been observed for a certain type of fuse:


5 ,					21
Week	1	2	3	4	5
% failing by the end of week	5	15	35	57	100

There are 1000 fuses in use and it costs Rs 5 to replace an individual fuse. If all fuses were replaced simultaneously it would cost Rs 1.25 per fuse. It is proposed to replace all fuses at fixed intervals of time, whether or not they have burnt out, and to continue replacing burnt out fuses as they fail. At what time intervals should the group replacement be made? Also prove that this optimum policy is superior to the straight forward policy of replacing each fuse only when it fails.

UNIT-III

OR

- 6. a) Explain (i) Two-person Zero-sum game (ii) Pure strategy in a game
 - b) Solve the game whose payoff matrix is given below:

- 7. A fertilizer company distributes its products by trucks that are loaded at its only loading station. Both, company trucks and contractor's trucks are used for this purpose. It was found that on an average, every 5 minutes one truck arrived and the average loading time was 3 minutes. Out of these trucks 40 per cent being to the contractor's. Determine:
 - (i) The probability that a truck has to wait.
 - (ii) The waiting time of a truck that waits.
 - (iii) The expected waiting time of the contractor's trucks per day.

OR

8. Find the optimal order quantity of a product for which the price breaks are as follows:

Quantity (Units)	Price per Unit (Rs)
$0 < Q_1 < 100$	20
$100 \le Q_2 < 200$	18
$200 \leq Q_3$	16

The monthly demand of the product is 400 units. The storage cost is 20 % of the unit cost and the cost of ordering is Rs 25.

UNIT-V

9. Use dynamic programming to solve the following linear programming problem. $Maximize Z = 8X_1 + 7X_2$

 $2X_1 + X_2 \le 8 \\ 5X_1 + 2X_2 \le 15 \\ X_1, X_2 \ge 0$

OR

10. A company trading in motor vehicle spare parts wishes to determine the levels of stock it should carry for the items in the range. The demand is not certain and there is a lead time for stock replenishment. For an item A, the following information is obtained:

Demand(units/day)	3	4	5	6	7
Probability	0.10	0.20	0.30	0.30	0.10
in a set (nen unit/deu)		Sudanina a			

Carrying cost (per unit/day) =Rs 2, Ordering cost (per order)=Rs 50, lead time for replenishment = 3 days. Stock on hand at the beginning of the simulation exercise was 20 units. Carry out a simulation run over a period of 10 days with the objective of evaluating the inventory rule: Order 15 units when present inventory falls below 15 units. Use random numbers in the sequence: 0, 9, 1, 1, 5, 1, 8, 6, 3, 5. Also calculate total inventory cost.

10M

4M

14M

14M

14M