		all Ticket Number :				<u> </u>	_[<u> </u>			<u> </u>				R-17		
C	.00	IV B.Tech. I	Seme	este	ər Sı	ממנ	lem	ento	ar∨ Ex	kan	nina	itions	Julv	2021			_
			00111	0010		• •			erin				, ,	_0_1			
						-		-	ring	-							
Ν	Λα	x. Marks: 70													e: 3 H	lours	S
		Answer all five unit	s by c	hoc	osing	one	e que		from	ead	ch u	nit (5	x 14 =	= 70 N	larks)		
															Marks	со	Bloo
						UNI	ті								Marks	00	Lev
а	2)	While fixing the bride	nile ar	nma	ant i			ho in	norta	nt n	ointe	to he	ovnla	ined			
C	-	for a good bridge site		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ont, i	mat			ipona	un p	01110		, crpia	incu	7M		BT
h		Explain the difference		veer	n the	road	d and	railv	/av st	anda	ards	while	calcula	atina			
~	,	the earth pressure for							lay or	anac			oulouid	anig	7M		ВT
		·					DR										
		Design a box culvert l	-										-				
		to a dead load of 1400															
		the unit weight of soil concrete and Fe415 s						-	•		dt soi	I IS 30	°. Use	IVI25	14M		BT
				loau	wiat			Opai	115 0.0	5							
		A reinforced concrete	slah c	rulve	ort is			nr a N	Jation	al hir	nhwa	v cros	sina to	suit			
		the following data: Wie				•				-	-	•	-				
		80 mm; Clear span: 5	5 m; W	/idth	of b	earin	g: 40	0 mm	; Foot	t patl	hs 1	m on	either :	side;			
		Type of loading: IRC C										e415	HYSD	oars.			
		Design the slab to cor	nfirm to		5:21			e spe	cificat	ions.					14M		BT
		Design a T-beam su	oerstru	uctu	re foi)R idae	on a	nation	al hi	ahw	av Th	e follo	wina			
		details are available					-				-	-		-			
		Meterials: M40 conci			•								•	,,	14M		BT
						UNIT	[]]]										
		A plate girder is to be	e desig	gnec	for a	a Bro	ad G	auge	track	to s	uit th	e follo	wing c	data:			
		Span of the bridge															
		Calculations per trac									tions	per t	rack: 1	801			D 7
		kN. Design the plate	gırder	to c	confir			RCIO	bading	JS.					14M		BT
		Design a composite	bridae	der	ck co)R ting o	f an I	2008	Slah	on s	teel a	irders	The			
		span of the bridge is	•				•					•					
		side; Number of ste						•	•								
		concrete and Fe415	steel														
		Other details: Bed le										•					
		Road top level: 155.	50 m; ł	Hard				8.50	m; wi	ng w	alls:	Retu	n type	•	14M		BT
						UNIT											
		Write the detailed ste	eps inv	/olve	ed in		-	n of s	steel r	ocke	r bea	arıng.			14M		BT
		Design an elastome	ric upr	reinf	force	-)R oprer		nd has	aring	to a	suit th	e follo	wing			
		data: Vertical load (s					•	•		•				•			
		force: 60 kN; Modulu							• •						14M		BT
						UNI	Г–V										
		Briefly explain about	the va	ariou	is for	ces a	acting	, on t	he pie	ers a	nd al	butme	ents.		14M		BT
		-					DR		-								
		Verify the stability of					•				•		•				
		1.5 m; Height: 4 m;															
		Material: Stone mas superstructure: T-bea				•					•		pose:	300;	14M		BT
		superstructure. 1-De		uye	0154		, III C ****		my. II		JI022	» д д.			1 4 I VI		Ы

Hall Ti	cket Number :										
R-17											
Code: 7G671 IV B.Tech. I Semester Supplementary Examinations July 2021 Design and Drawing of Irrigation Structures (Civil Engineering)											
Max. M	arks: 70		Time: 3 Hours								
Answer <i>any One</i> question from the following (1 x 70 = 70Marks)											
			Marks CO Blooms Level								
1.	Design a sluice (tank sluice with tov with a following data:	ver head) taking off from a tank									
	Discharge :	0.38m ³ /sec									
	Top width of the bund :	2.0 m									
	Side slopes :	2: 1									
	Top level of the bank :	+68.00									
	Ground level at the site :	+62.50									
	Sill of the sluice at off-take is :	+62.00									
	Maximum water level in the tank :	+66.00									
	Full tank level is :	+65.00									
	Average low water level is :	+63.00									
	Good hard soil for foundation is ava	ilable at : + 61.50									
	Details of canal below the sluice										
	Bed level : +62.0	0									
	F.S.L : +62.50										
	Bed width : 1.80m	1									
	Side slopes : 1.5:1 with top bank at	+ 63.50m									
	Draw the longitudinal section. Assu	me any suitable data.	70M								
	O	R									
 Design a trapezoidal notch fall for the following data. Assume important missing data. Draw the important views on a drawing sheet Full supply discharge : 22 m3/sec (US/DS) Full supply level : 101m US/100m DS Full supply depth : 2 m US/ 2 m DS Bed width : 12m US/12m DS Bed level : 99 m US / 98 m D/S 											
	Drop : 1m		70M								

	Hall	I Ticket Number :												Г			_
Code: 7G674									R-1								
-		IV B.Tech. I	Sem	este	ər Su	Jppl	eme	entc	iry E	xan	nina	tion	s Ju	ly 2	021		
								nag									
		Morrison 70		((Com	nmo	n to	All B	ranc	hes)				Time		
IV		Marks: 70 Answer all five units	s by c	choc	osina	one	aue	stion	fron	ı ea	chu	nit (;	5 x 1		Time: 3 70 Mark		115
			,		0		' *****					,				,	
															Marks	со	Bloon Leve
						UN	IIT–I										
•	a)	Demonstrate natur disasters on enviro									at are	e the o	effec	ts of	7M	CO1	L2
	b)	Explicit an accoun relation with human				appr	oach	es to	disa	ster	man	agen	nent	and	7M	CO1	L2
						0	R										
•	a)	Summarize the con of the government	•			•	nder	with	speci	al re	feren	ce to	the	role	7M	CO1	L1
	b)	Discuss various me	ethod	s for	rescu	uing a	affect	ed pe	erson	s in a	a disa	ster	situa	ition.	7M	CO1	L1
						UN	IT–II										
5.	a)	State epicenter and many types of eart						eat dia	agrar	n? B	ased	on d	epth	how	8M	CO2	L1
	b)	Explore plate tecto	nic m	over	nent	s, de: O		e lano	dslide	s.					6M	CO2	L1
•	a)	Explicit a note or measures at the tir				ands		. Sta	te w	hat	are 1	he r	nitiga	ation	7M	CO2	L5
	b)	Explore various en	vironi	ment	tal Im	pact	s of \	/olca	nic E	rupti	ons				7M	CO2	L5
						UN	T–III										
•	a)	Describe a flow cha	art of	plan	etary	/ and	extra	a plar	netary	/ haz	ard.				6M	CO3	L3
	b)	Elucidate the conse	quen	ces c	of the	phen	omer	non o	f drou	ight?	Sum	mariz	ze br	iefly.	8M	CO3	L3
						0											
•	a)	Distinguish the diffe													7M	CO3	L2
	b)	Examine the role o managing disasters	•	orat	e soo		-	1	ty as	an e	merg	jing a	iven	ue in	7M	CO3	L2
	、				. L		T–IV									004	
•	a)	What are the impor types of damages	that o	ccur	due	to di	saste	rs.			narız	e the	ditte	erent		CO4	L4
	b)	Illustrate the floods	s haza	ards	of Ind		•	bast y	/ears	•					6M	CO4	L4
	-)			I		0										CO4	1.4
•	a) b)	Explicit a note on fl					• •					***			6M	CO4 CO4	L1 L1
	b)	Summarize briefly which is causing al	•			ment	tal ex	•		grow	un m	rece	ent y	ears	8M	004	LI
	a)	List out some guide	elinee	for	achic		V_TI	ainah	اہ م	Velo	mer	nt			6M	CO5	L5
•	a) b)	Explicit the metho				•				-			e ro	le of		CO5	L5
	,	technology in disas		-			a u	54010	a			.5 010	5 10				20
				·	-	0	R										
	a)	Summarize the diff of rehabilitation.	erent	type	es of	dama	age r	eport	s. Ide	entify	the o	differe	ent t	ypes	8M	CO5	L3
	b)	Discuss the role of	techr	nolog	gy in	disas	ster n		geme	nt.					6M	CO5	L3

	На	all Ticket Number :	D 11		
	Co	de: 7G677	R-17		
		IV B.Tech. I Semester Supplementary Examinations July 202 Finite Element Methods for Civil Engineering (Civil Engineering)	21		
	Ма		ne: 3 Marks		
			Marks	СО	Blooms Level
		UNIT–I			
1.	a)	Mention the basic steps in Rayleigh- Ritz method	7M	CO1	L1
	b)	What is the need of Finite Element Analysis and list some applications and software's of FEM?	7M	CO1	L1
		OR			
2.		A bar of length 'L' has a cross sectional area, which varied linearly from value '2A' at one end to 'A 'at the other end. End 1 is held against any moment while the bar is stretched by an axial force 'P' is applied at end 2. Obtain the solutions for axial displacements and axial stress distributions and the value of the potential energy based on the following displacement field $u = a1 + a 2 x$	14M	CO1	L2
3.		UNIT-II For the stepped bar shown in the figure below, determine the nodal displacements, element stress and reactive reactions. Take P = 250 kN, E= 200 GPa, $a_1=120 \text{ mm}^2$, $a_2=150 \text{ mm}^2$ and $a_3=350 \text{ mm}^2$.			
		200 + 200 + 250			
		OR	14M	CO2	L2,L4
4.	a)	For a four noded element shown in natural coordinates in Figure Generate the shape functions and show that $\sum N_i = 1$.			
		$\xi = -1$ $\xi = -1/3$ $\xi = +1/3$ $\xi = +1/3$ $\xi = +1$	9M	CO2	L3
	b)	For a one-dimensional three noded element shown in Figure generate the shape function N_1 , N_2 and N_3 and show that $\sum N_i = 1$. Given $x_i = 1$, $x_2 = 2$, $x_3 = 4$.			
		1 2 3			

 $x = x_1$

 $x = x_2$ $x = x_3$ 5M CO2 L3

9M

14M

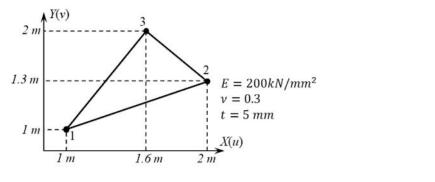
CO3

CO3

CO3

CO4

L3,L4

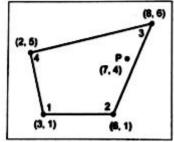

L4

L4

L2

UNIT–III

5. a) For the triangular element shown in Figure evaluate the stiffness matrix for the element if the element is used for plane stress analysis.


- b) If the displacement at nodes 1, 2 and 3 are (0.754, 1.836), (0, 0), (0, 0), then determine the stresses in the element. (Refer above figure) 5M
 - OR
- 6. Evaluate the shape function for a CST element.

UNIT–IV

7. Derive the Jacobian matrix for a linear 4-noded isoparametric quadrilateral element. 14M

OR

8. a) For the isoparametric quadrilateral elements shown in figure determine the local coordinates of the point P which has Cartesian Coordinates (7, 4).

			9M	CO4	L3
	b)	What is an iso-parametric, sub-parametric and super-parametric element and explain briefly with examples.	5M	CO4	L2
		UNIT–V			
9.	a)	What are the conditions of convergence and compatibility requirement?		CO5	L5
	b)	Obtain the linear relations between Cartesian Coordinates and Natural Coordinates		CO5	L4
		OR			
10.		Evaluate the integral, $I = (a_1 + a_2 + a_3^2 + a_4^3) d$ using Gaussian two- point rule and verify the solution with exact integral.	14M	CO5	L4

	Hall	I Ticket Number :]			
	2			<u> </u>]	R	2-17	
C	~oa	le: 7GA71 IV B.Tech. I Semester Suppleme	- ntarv	/ Exa	mina	ntior	ns lulv	/ 2021		
		Human Resource					15 501	, 2021		
		(Common to ,		-						
I		x. Marks: 70 Answer all five units by choosing one que: ******		om eo	achu	unit (5 x 14	-	e: 3 Hou arks)	Jrs
								Marks	со	Blooms Level
		UNIT–I								
1.	a)	What is HRM? Explain its nature and Scope.						7M	1,2	1
	b)	Explain HRM Operational Functions.						7M	1,2	2
		OR								
2.	a)	What is Ethics? Enumerate the need of ethic	al aspe	ects of	HRN	/		7M	1, 2	4
	b)	Differentiate personnel management and HR	RM					7M	1, 2	5
		UNIT–II	_							
3.	a)	Elicit the role of Human Resource Informatio	-	em in a	an or	ganiz	ation.	7M	6, 7 8	2
	b)	What are the different factors affecting HRP.						7M	6, 7, 8	4
		OR								
4.	a)	Define Job Description. What items are t Description?	ypically	/ INCLU	ided	in tr	ie Job	7M	6, 7, 8	1
	b)	Describe Job Description and its importance						7M	6, 7, 8	2
		UNIT–III								
5.	a)	What is recruiting? Explain process and factors	s affecti	ng rec	ruitm	ent.		7M	1, 4	4
	b)	Write about the importance of internal recruit	tment n	nethoo	ls.			7M	1, 4	2
		OR								
6.	a)	Explain the emerging trends in Employee Se	election	Proce	ess.			7M	1, 4	2
	b)	Define placement and orientation role in HRI	М					7M	1, 4	1
		UNIT–IV								
7.	a)	List and briefly explain each of the steps in th	he Traii	ning P	roces	SS.		7M	3, 4,5	1
	b)	Explain different methods of training.						7M	3, 4, 5	2
		OR								
8.	a)	Define the process of Career stages and De	•					7M	3, 4,5	1
	b)	List the advantages and disadvantages of tra	aining p	proces	S			7M	3, 4, 5	1
9.	a)	Define compensation? Explain various com	ponent	ts of p	bay s	tructu	ures in			
		India.						7M	3, 4, 5	1
	b)	List out various types of compensation proce OR	ess					7M	3, 4, 5,	1
10.	a)	Write a note on Industrial Relations objective	es, nee	d and	partie	es inv	olved	7M	3, 4, 5	3
	b)	Define the need of Performance Appraisal						7M	3, 4, 5	1
	,	***	44							

	H	lall Ticket	Numb	er :											
	<u> </u>	de: 7G673	2						<u> </u>			R-	17		
	CU			:h. I Se	mester	Supple	emento	ar∨ E	xamin	natior	ns Julv	2021			
							tion En	•							
						-	Enginee	-	-						
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = ********												Time: 3 Hours 70 Marks)		
												Marks	со	Blooms Level	
						UNIT–I									
1.	a)	 a) Discuss the significant recommendations of Jayakar Committee report Mention how this helped in road development in India. 										7M	1	3	
	b) Derive an expression for finding the stopping sight distance at level and a										l and a	t			
		grades.										7M	1	3	
						OR									
2.	 a) While aligning a highway in a built up area, it was necessary to provide a horizontal circular curve of radius 325m. Design the following geometric features: (i) Super elevation, (ii) Extra Widening of pavement, (iii) Length of 									;					
		transition curve.										7M	1	4	
	 b) What are the various objectives of preliminary survey for highway alignmer Enumerate the details to be collected and the various steps in the conventior 														
			e the d	etails to	be collect	ed and t	the variou	is ste	ps in the	e conv	entiona		1	3	
		method										7M	1	3	
3	3. a) Explain the parameters which characterize traffic flow? With neat sketche										kotchog				
З.	a)	elaborate	how th	ey are r	elated.							7M	2	3	
	b) Vehicle 'A' is approaching from west and vehicle 'B' from south. After collision 'A' skids 600 north of east and 'B' skid 300 south of east. Skid distance before collision for 'A' is 18 m and 'B' is 26 m. The skid distances after collision are 30m and 15 m respectively. Weight of 'A' and B are 4500 and 6000 respectively. Skid resistance of pavement is 0.55 m. Determine the pre-))				
		collision s	•					-				7M	2	4	
						OR									
4.	a)	What are	the ap	plication	ns of locat	tion file,	spot ma	ps, c	ollision	diagra	ms and	I			
		condition of	diagrai	ns?								7M	2	4	
	b) From an in-out survey consisting of 50 bays, the initial count was 18. The number of vehicles coming in and out of the parking lot for a time interval of 5 minutes is shown below. Find the accumulation, total parking load, average occupancy, and efficiency of parking lot.										5				
		Tim	е	5	10	15	5 2	20	25		30				
		IN		7	6	3		3	7		4				
		OU	T	2	4	5		2	8		3	7M	2	5	
					I	UNIT-III	l		•			-			
5.		Explain cle	•			•									
		rotary tho	•	e traffic	: may ha	ve to o	otherwise	go ii	n cross	direc	tions o		~	A	
		radiating r	uads.			00						14M	3	4	
						OR									

			Code:	7G673	
6.	a)	At a right angled intersection of two roads, Road '1'has four lanes with a total width of 12.0 m and Road '2' has two lanes with a total width of 6.6m. the volume of traffic approaching the intersection during design hour are 950 and 843 PCU / hour on the two approaches of Road 1 and 378 and 180 PCU /hour on the two approaches of Road 2. Design the signal timings as per IRC guidelines	7M	3	3
	b)	Explain the advantageous and disadvantageous of rotary. Elaborate the design elements involved for estimation of capacity of it.	7M	3	3
7.	a)	Explain the plate bearing test procedure and how corrections for 'K' value may be made for a different plate size and for accounting for worst moisture conditions.	7M	4	4
	b)	A bituminous mix has 47.4% of coarse aggregate and 47.3% fine aggregate. The bulk specific gravity of the coarse aggregate is 2.716 and of the fine aggregate is 2.689. There is no mineral filler. The asphalt content is 5.3% and its specific gravity is 1.03. The maximum specific gravity of paving mix ' G_m ' is 2.535 and the bulk specific gravity of the compacted mix, ' G_b ' is 2.442. Calculate the voids in the mineral aggregate, the percentage of the air voids			
		in the mix and the percent voids filled with asphalt. OR	7M	4	6
8.	a)	Discuss the importance of bitumen grading based on viscosity parameters. Bring the importance VG $-$ 30 and VG $-$ 40 bitumen use in highway	714	Λ	Λ
	ь)	constructions as per IS 73 2016 guidelines	7M 7M	4 4	4 3
	b)	Explain in brief the Marshall method of mix design for arriving mix properties UNIT-I	7 171	4	3
9.	a)	Calculate the stresses at interior, edge and corner regions of a concrete pavement using Westergaards stress equation for the following data: Wheel load=4100 kg, Modulus of elasticity of concrete=3.3X10 ⁵ kg/cm ² , Pavement thickness=30cm, Modulus of sub-grade reaction=8kg/cm ³ , Diameter of loaded area =25cm, Poisson's ratio of concrete= 0.15. Assume			
	b)	data if any data required. Draw a sketch of flexible pavement cross section and show the component	7M	5	5
	0)	parts. Enumerate the function and importance of each component of the pavement.	7M	5	4
		OR			
10.	a)	It is proposed to widen an existing 2-lane National Highway section to 4-lane divided road. Design the pavement for new carriageway with the following data as per IRC: 37-2012			
		 (i) Initial traffic in each direction in the year of Completion of construction = 500 CV/day. 			
		 (ii) Design life = 15 years (iii) Design CBR of sub-grade soil = 4.5% (iv) Traffic growth rate = 8% 			
		Vehicle Damage Factor (VDF)= 4.0 (standard axles per CV).	7M	5	6
	b)	Show pictorially the position of wheels for calculation of stresses in at interior, edge and corner regions of a concrete pavement. Also explain why the stress at edge region of highway concrete pavement is critical as compare to other			
		locations?	7M	5	5
