Hall Tick	et Number:											
Code: 70	G677	,									R-17	
IV	B.Tech. I Se Finit	emeste e Elem	nent M		ds fo	r Ci	ivil E				ec 2022	
Max. Mo Answer o	arks: 70 any five full qu	ıestions	`	osing o		Ū	•	om e	ach	unit (5	Time: 3 Hov 5x14 = 70 Mark	
1.	Explain brie	fly abou	t advant			sadv	anta	ges c	of FE	M.		14M
OR 2. Explain briefly about Plane Strain condition and derive an expression for												
۷.	Explain briefly about Plane Strain condition and derive an expression for Plane Strain Condition.										14M	
	5				JNIT-							4 43 4
3.	Determine the Stiffness matrix for a bar element by using direct method. OR										14M	
4.	Explain briefly about the difference between Global co-ordinate system and Natural co-ordinate system.									14M		
5.	Derive the 6	element	stiffness		for a		nded	trian	gular	· eleme	ent	14M
.		7.011.101.1t	0	, mann	OF		, a o a		gaiai	0.0		
6.		nt P, the	X co-ore		•						Fig. 2. At the I 3 and the Y	
				1	(3)	3,6)	7					
				(2,	3)		(4	1,5)				14M
7.	Explain brie	fly abou	t Iso-pa		JNIT- c eler OF	nent	S.					14M
8.	Derive the a 8-noded I				-			natrix	k and	d stiffne	ess matrix for	14M

UNIT-V

9. Find the integral $I = (2x^3 + 5x^2 + 6)$ dx using Gaussian quadrature method with 2 point scheme. The Gauss points are +or- 0.5774 and the weights at two points are equal to unity. The limits for integral are -1 to 1.

14M

OR

10. Derive an expression for one point Gaussian approximation.

14M

	На	Il Ticket Number :										
	Cod	de: 7G673										
		IV B.Tech. I Semester Supplementary Examinations Nov/Dec 2022										
		Transportation Engineering										
	Мс	(Civil Engineering) ax. Marks: 70 Time: 3 Hours										
	An	swer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ***********************************										
		UNIT-I										
1.	a)	Explain the function of various components of a structure with a neat sketch?	8M									
	b)	Briefly explain the objects and necessity of the highway planning? OR	6M									
2.	a)	Explain the design of super elevation?	7M									
	b)	Briefly describe about the necessity of extra widening?	7M									
		UNIT-II										
3.	a)	Explain the term traffic volume and discuss about the objects of carrying out traffic volume studies?	7M									
	b)	Briefly explain the different vehicular characteristics?	7M									
		OR										
4.	a)	Explain the different types of parking survey and effects of improper parking in the town?	7M									
	b)	Sketch any four types of mandatory signs used to control road traffic?	7M									
5.		List the various forms of intersections considered for traffic control and explain them										
Ο.		briefly with neat sketches?	14M									
		OR										
6.	a)	Define channelization and explain with neat sketches?	7M									
	b)	Briefly explain the purpose of providing channelization?										
		UNIT-IV										
7.	a)	Explain the specifications of materials and construction steps for bituminous										
		surface course?	7M									
	b)	Write short note on:										
		i) prime coat ii) tack coat iii)seal coat	7M									
•	,	OR .	7M									
8.	a)	,										
	b)	Enumerate the functions and importance of each component of the pavements? UNIT-V	7M									
9.	a)	Explain the characteristics of an ideal airport layout?	7M									
	b)	Discuss briefly about the data required for the airport site selection	7M									
		OR										
10.	a)	Explain the typical airport layout and label its components?	7M									
	b)	Explain the various assumptions considered to determine Basic runway length?	7M									
		and the										

Hall Ticket Number :						D 17
						K-I/

Code: 7G671

IV B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Design and Drawing of Irrigation Structures

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

Answer *any One* question from the following ($1 \times 70 = 70$ Marks)

Marks CO Blooms Level

1. Design a sluice (tank sluice with tower head) taking off from a tank with a following data:

Discharge: 0.38m³/sec

Top width of the bund: 2.0 m 2: 1 Side slopes: Top level of the bank: +68.00 Ground level at the site: +62.50 Sill of the sluice at off-take is: +62.00 Maximum water level in the tank: +66.00 Full tank level is: +65.00 Average low water level is: +63.00

Good hard soil for foundation is available at: + 61.50

Details of canal below the sluice
Bed level: +62.00
F.S.L: +62.50

Bed width: 1.80m

Side slopes: 1.5:1 with top bank at + 63.50m

Draw the longitudinal section. Assume any suitable data.

70M

OR

2. Design and draw the surplus work of a tank forming part of a chain of tanks. The combined catchment area of the group of tanks is 30 km² and the area of the catchment intercepted by the upper tanks is 19 km². Water will be stored in the tank to a level of +12.00 meters above MSL limiting the submersion of foreshore lands up to a level of +12.75 meters above MSL. The general ground level at the proposed site of work is +11.00 meters, and the ground level below the proposed surplus slopes off till it reaches +10.00 meters in about 6 meters distance.

The tank bund has a top width of 2 meters at level +14.50 with 2:1 side slope on either side. The tank bunds are designed for a saturation gradient of 4:1 with 1-meter clear cover. The foundations are of hard gravel at a level of 9.50 meters near the site of work.

70M

END